Skip to content
Snippets Groups Projects
arithmetic.go 14.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • // asmcheck
    
    // Copyright 2018 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    package codegen
    
    // This file contains codegen tests related to arithmetic
    
    // simplifications and optimizations on integer types.
    // For codegen tests on float types, see floats.go.
    
    // ----------------- //
    //    Subtraction    //
    // ----------------- //
    
    
    func SubMem(arr []int, b, c, d int) int {
    
    	// 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)`
    
    	// amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)`
    
    	arr[2] -= b
    	// 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)`
    
    	// amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)`
    
    	// 386:`DECL\s16\([A-Z]+\)`
    	arr[4]--
    	// 386:`ADDL\s[$]-20,\s20\([A-Z]+\)`
    	arr[5] -= 20
    
    	// 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+`
    
    	// 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)`
    
    	// 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)`
    
    	// 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)`
    
    	// amd64:`DECQ\s64\([A-Z]+\)`
    	arr[8]--
    
    	// 386:"SUBL\t4"
    	// amd64:"SUBQ\t8"
    	return arr[0] - arr[1]
    }
    
    
    func SubFromConst(a int) int {
    	// ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR`
    	// ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR`
    	b := 40 - a
    	return b
    }
    
    func SubFromConstNeg(a int) int {
    	// ppc64le: `ADD\t[$]40,\sR[0-9]+,\sR`
    	// ppc64: `ADD\t[$]40,\sR[0-9]+,\sR`
    	c := 40 - (-a)
    	return c
    }
    
    func SubSubFromConst(a int) int {
    	// ppc64le: `ADD\t[$]20,\sR[0-9]+,\sR`
    	// ppc64: `ADD\t[$]20,\sR[0-9]+,\sR`
    	c := 40 - (20 - a)
    	return c
    }
    
    func AddSubFromConst(a int) int {
    	// ppc64le: `SUBC\tR[0-9]+,\s[$]60,\sR`
    	// ppc64: `SUBC\tR[0-9]+,\s[$]60,\sR`
    	c := 40 + (20 - a)
    	return c
    }
    
    func NegSubFromConst(a int) int {
    	// ppc64le: `ADD\t[$]-20,\sR[0-9]+,\sR`
    	// ppc64: `ADD\t[$]-20,\sR[0-9]+,\sR`
    	c := -(20 - a)
    	return c
    }
    
    func NegAddFromConstNeg(a int) int {
    	// ppc64le: `SUBC\tR[0-9]+,\s[$]40,\sR`
    	// ppc64: `SUBC\tR[0-9]+,\s[$]40,\sR`
    	c := -(-40 + a)
    	return c
    }
    
    
    func SubSubNegSimplify(a, b int) int {
    	// amd64:"NEGQ"
    
    	// ppc64:"NEG"
    	// ppc64le:"NEG"
    
    	r := (a - b) - a
    	return r
    }
    
    func SubAddSimplify(a, b int) int {
    	// amd64:-"SUBQ",-"ADDQ"
    
    	// ppc64:-"SUB",-"ADD"
    	// ppc64le:-"SUB",-"ADD"
    
    	r := a + (b - a)
    	return r
    }
    
    func SubAddNegSimplify(a, b int) int {
    	// amd64:"NEGQ",-"ADDQ",-"SUBQ"
    
    	// ppc64:"NEG",-"ADD",-"SUB"
    	// ppc64le:"NEG",-"ADD",-"SUB"
    
    	r := a - (b + a)
    	return r
    }
    
    func AddAddSubSimplify(a, b, c int) int {
    	// amd64:-"SUBQ"
    
    	// ppc64:-"SUB"
    	// ppc64le:-"SUB"
    
    // -------------------- //
    //    Multiplication    //
    // -------------------- //
    
    
    func Pow2Muls(n1, n2 int) (int, int) {
    	// amd64:"SHLQ\t[$]5",-"IMULQ"
    	// 386:"SHLL\t[$]5",-"IMULL"
    	// arm:"SLL\t[$]5",-"MUL"
    	// arm64:"LSL\t[$]5",-"MUL"
    
    	// ppc64:"SLD\t[$]5",-"MUL"
    	// ppc64le:"SLD\t[$]5",-"MUL"
    
    	a := n1 * 32
    
    	// amd64:"SHLQ\t[$]6",-"IMULQ"
    	// 386:"SHLL\t[$]6",-"IMULL"
    	// arm:"SLL\t[$]6",-"MUL"
    
    	// arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL`
    
    	// ppc64:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
    	// ppc64le:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
    
    	// amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ`
    	// 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL`
    	// arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
    	// arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
    
    	// s390x:`SLD\t[$]5`,`SLD\t[$]6`,-`MULLD`
    
    func Mul_n120(n int) int {
    	// s390x:`SLD\t[$]3`,`SLD\t[$]7`,-`MULLD`
    	return n * -120
    }
    
    
    func MulMemSrc(a []uint32, b []float32) {
    	// 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+`
    	a[0] *= a[1]
    
    	// 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
    
    	// amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
    
    // Multiplications merging tests
    
    
    func MergeMuls1(n int) int {
    
    	// amd64:"IMUL3Q\t[$]46"
    	// 386:"IMUL3L\t[$]46"
    
    	// ppc64le:"MULLD\t[$]46"
    	// ppc64:"MULLD\t[$]46"
    
    	return 15*n + 31*n // 46n
    }
    
    func MergeMuls2(n int) int {
    
    	// amd64:"IMUL3Q\t[$]23","(ADDQ\t[$]29)|(LEAQ\t29)"
    
    	// 386:"IMUL3L\t[$]23","ADDL\t[$]29"
    
    	// ppc64le/power9:"MADDLD",-"MULLD\t[$]23",-"ADD\t[$]29"
    
    	// ppc64le/power8:"MULLD\t[$]23","ADD\t[$]29"
    
    	return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29
    }
    
    func MergeMuls3(a, n int) int {
    	// amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19"
    	// 386:"ADDL\t[$]19",-"IMULL\t[$]19"
    
    	// ppc64:"ADD\t[$]19",-"MULLD\t[$]19"
    	// ppc64le:"ADD\t[$]19",-"MULLD\t[$]19"
    
    	return a*n + 19*n // (a+19)n
    }
    
    func MergeMuls4(n int) int {
    
    	// amd64:"IMUL3Q\t[$]14"
    	// 386:"IMUL3L\t[$]14"
    
    	// ppc64:"MULLD\t[$]14"
    	// ppc64le:"MULLD\t[$]14"
    
    	return 23*n - 9*n // 14n
    }
    
    func MergeMuls5(a, n int) int {
    	// amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19"
    	// 386:"ADDL\t[$]-19",-"IMULL\t[$]19"
    
    	// ppc64:"ADD\t[$]-19",-"MULLD\t[$]19"
    	// ppc64le:"ADD\t[$]-19",-"MULLD\t[$]19"
    
    	return a*n - 19*n // (a-19)n
    }
    
    
    // -------------- //
    //    Division    //
    // -------------- //
    
    
    func DivMemSrc(a []float64) {
    
    	// 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
    
    	// amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
    
    func Pow2Divs(n1 uint, n2 int) (uint, int) {
    	// 386:"SHRL\t[$]5",-"DIVL"
    	// amd64:"SHRQ\t[$]5",-"DIVQ"
    	// arm:"SRL\t[$]5",-".*udiv"
    	// arm64:"LSR\t[$]5",-"UDIV"
    
    	// ppc64:"SRD"
    	// ppc64le:"SRD"
    
    	a := n1 / 32 // unsigned
    
    	// amd64:"SARQ\t[$]6",-"IDIVQ"
    	// 386:"SARL\t[$]6",-"IDIVL"
    	// arm:"SRA\t[$]6",-".*udiv"
    	// arm64:"ASR\t[$]6",-"SDIV"
    
    	// ppc64:"SRAD"
    	// ppc64le:"SRAD"
    
    	b := n2 / 64 // signed
    
    	return a, b
    }
    
    // Check that constant divisions get turned into MULs
    func ConstDivs(n1 uint, n2 int) (uint, int) {
    	// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
    
    	// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
    	// arm64:`MOVD`,`UMULH`,-`DIV`
    	// arm:`MOVW`,`MUL`,-`.*udiv`
    
    	a := n1 / 17 // unsigned
    
    	// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
    
    	// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
    
    	// arm:`MOVW`,`MUL`,-`.*udiv`
    
    	b := n2 / 17 // signed
    
    	return a, b
    }
    
    
    func FloatDivs(a []float32) float32 {
    	// amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
    
    	// 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
    
    func Pow2Mods(n1 uint, n2 int) (uint, int) {
    	// 386:"ANDL\t[$]31",-"DIVL"
    
    	// amd64:"ANDL\t[$]31",-"DIVQ"
    
    	// arm:"AND\t[$]31",-".*udiv"
    	// arm64:"AND\t[$]31",-"UDIV"
    
    	// ppc64:"ANDCC\t[$]31"
    	// ppc64le:"ANDCC\t[$]31"
    
    	a := n1 % 32 // unsigned
    
    
    	// 386:"SHRL",-"IDIVL"
    	// amd64:"SHRQ",-"IDIVQ"
    	// arm:"SRA",-".*udiv"
    	// arm64:"ASR",-"REM"
    	// ppc64:"SRAD"
    	// ppc64le:"SRAD"
    
    	b := n2 % 64 // signed
    
    	return a, b
    }
    
    
    // Check that signed divisibility checks get converted to AND on low bits
    
    func Pow2DivisibleSigned(n1, n2 int) (bool, bool) {
    
    	// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
    	// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
    	// arm:"AND\t[$]63",-".*udiv",-"SRA"
    
    	// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
    
    	// ppc64:"ANDCC\t[$]63",-"SRAD"
    	// ppc64le:"ANDCC\t[$]63",-"SRAD"
    
    	a := n1%64 == 0 // signed divisible
    
    	// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
    	// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
    	// arm:"AND\t[$]63",-".*udiv",-"SRA"
    
    	// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
    
    	// ppc64:"ANDCC\t[$]63",-"SRAD"
    	// ppc64le:"ANDCC\t[$]63",-"SRAD"
    	b := n2%64 != 0 // signed indivisible
    
    	return a, b
    
    // Check that constant modulo divs get turned into MULs
    func ConstMods(n1 uint, n2 int) (uint, int) {
    	// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
    
    	// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
    	// arm64:`MOVD`,`UMULH`,-`DIV`
    	// arm:`MOVW`,`MUL`,-`.*udiv`
    
    	a := n1 % 17 // unsigned
    
    	// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
    
    	// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
    
    	// arm:`MOVW`,`MUL`,-`.*udiv`
    
    	b := n2 % 17 // signed
    
    	return a, b
    }
    
    // Check that divisibility checks x%c==0 are converted to MULs and rotates
    
    func Divisible(n1 uint, n2 int) (bool, bool, bool, bool) {
    
    	// amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ"
    	// 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ"
    	// arm64:"MOVD\t[$]-6148914691236517205","MUL","ROR",-"DIV"
    	// arm:"MUL","CMP\t[$]715827882",-".*udiv"
    	// ppc64:"MULLD","ROTL\t[$]63"
    	// ppc64le:"MULLD","ROTL\t[$]63"
    
    	evenU := n1%6 == 0
    
    
    	// amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ"
    	// 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ"
    	// arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV"
    	// arm:"MUL","CMP\t[$]226050910",-".*udiv"
    	// ppc64:"MULLD",-"ROTL"
    	// ppc64le:"MULLD",-"ROTL"
    
    	oddU := n1%19 == 0
    
    	// amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ"
    	// 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ"
    	// arm64:"MUL","ADD\t[$]3074457345618258602","ROR",-"DIV"
    	// arm:"MUL","ADD\t[$]715827882",-".*udiv"
    
    	// ppc64/power8:"MULLD","ADD","ROTL\t[$]63"
    	// ppc64le/power8:"MULLD","ADD","ROTL\t[$]63"
    	// ppc64/power9:"MADDLD","ROTL\t[$]63"
    	// ppc64le/power9:"MADDLD","ROTL\t[$]63"
    
    	evenS := n2%6 == 0
    
    	// amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ"
    	// 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ"
    	// arm64:"MUL","ADD\t[$]485440633518672410",-"ROR",-"DIV"
    	// arm:"MUL","ADD\t[$]113025455",-".*udiv"
    
    	// ppc64/power8:"MULLD","ADD",-"ROTL"
    	// ppc64/power9:"MADDLD",-"ROTL"
    	// ppc64le/power8:"MULLD","ADD",-"ROTL"
    	// ppc64le/power9:"MADDLD",-"ROTL"
    
    	oddS := n2%19 == 0
    
    	return evenU, oddU, evenS, oddS
    
    // Check that fix-up code is not generated for divisions where it has been proven that
    // that the divisor is not -1 or that the dividend is > MinIntNN.
    func NoFix64A(divr int64) (int64, int64) {
    	var d int64 = 42
    	var e int64 = 84
    	if divr > 5 {
    		d /= divr // amd64:-"JMP"
    		e %= divr // amd64:-"JMP"
    
    		// The following statement is to avoid conflict between the above check
    		// and the normal JMP generated at the end of the block.
    		d += e
    
    	}
    	return d, e
    }
    
    func NoFix64B(divd int64) (int64, int64) {
    	var d int64
    	var e int64
    	var divr int64 = -1
    	if divd > -9223372036854775808 {
    		d = divd / divr // amd64:-"JMP"
    		e = divd % divr // amd64:-"JMP"
    
    	}
    	return d, e
    }
    
    func NoFix32A(divr int32) (int32, int32) {
    	var d int32 = 42
    	var e int32 = 84
    	if divr > 5 {
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		d /= divr
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		e %= divr
    
    	}
    	return d, e
    }
    
    func NoFix32B(divd int32) (int32, int32) {
    	var d int32
    	var e int32
    	var divr int32 = -1
    	if divd > -2147483648 {
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		d = divd / divr
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		e = divd % divr
    
    	}
    	return d, e
    }
    
    func NoFix16A(divr int16) (int16, int16) {
    	var d int16 = 42
    	var e int16 = 84
    	if divr > 5 {
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		d /= divr
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		e %= divr
    
    	}
    	return d, e
    }
    
    func NoFix16B(divd int16) (int16, int16) {
    	var d int16
    	var e int16
    	var divr int16 = -1
    	if divd > -32768 {
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		d = divd / divr
    		// amd64:-"JMP"
    		// 386:-"JMP"
    		e = divd % divr
    
    // Check that len() and cap() calls divided by powers of two are
    // optimized into shifts and ands
    
    func LenDiv1(a []int) int {
    	// 386:"SHRL\t[$]10"
    	// amd64:"SHRQ\t[$]10"
    
    	// arm64:"LSR\t[$]10",-"SDIV"
    	// arm:"SRL\t[$]10",-".*udiv"
    
    	// ppc64:"SRD"\t[$]10"
    	// ppc64le:"SRD"\t[$]10"
    
    	return len(a) / 1024
    }
    
    func LenDiv2(s string) int {
    	// 386:"SHRL\t[$]11"
    	// amd64:"SHRQ\t[$]11"
    
    	// arm64:"LSR\t[$]11",-"SDIV"
    	// arm:"SRL\t[$]11",-".*udiv"
    
    	// ppc64:"SRD\t[$]11"
    	// ppc64le:"SRD\t[$]11"
    
    	return len(s) / (4097 >> 1)
    }
    
    func LenMod1(a []int) int {
    	// 386:"ANDL\t[$]1023"
    
    	// amd64:"ANDL\t[$]1023"
    
    	// arm64:"AND\t[$]1023",-"SDIV"
    	// arm/6:"AND",-".*udiv"
    	// arm/7:"BFC",-".*udiv",-"AND"
    
    	// ppc64:"ANDCC\t[$]1023"
    	// ppc64le:"ANDCC\t[$]1023"
    
    	return len(a) % 1024
    }
    
    func LenMod2(s string) int {
    	// 386:"ANDL\t[$]2047"
    
    	// amd64:"ANDL\t[$]2047"
    
    	// arm64:"AND\t[$]2047",-"SDIV"
    	// arm/6:"AND",-".*udiv"
    	// arm/7:"BFC",-".*udiv",-"AND"
    
    	// ppc64:"ANDCC\t[$]2047"
    	// ppc64le:"ANDCC\t[$]2047"
    
    	return len(s) % (4097 >> 1)
    }
    
    func CapDiv(a []int) int {
    	// 386:"SHRL\t[$]12"
    	// amd64:"SHRQ\t[$]12"
    
    	// arm64:"LSR\t[$]12",-"SDIV"
    	// arm:"SRL\t[$]12",-".*udiv"
    
    	// ppc64:"SRD\t[$]12"
    	// ppc64le:"SRD\t[$]12"
    
    	return cap(a) / ((1 << 11) + 2048)
    }
    
    func CapMod(a []int) int {
    	// 386:"ANDL\t[$]4095"
    
    	// amd64:"ANDL\t[$]4095"
    
    	// arm64:"AND\t[$]4095",-"SDIV"
    	// arm/6:"AND",-".*udiv"
    	// arm/7:"BFC",-".*udiv",-"AND"
    
    	// ppc64:"ANDCC\t[$]4095"
    	// ppc64le:"ANDCC\t[$]4095"
    
    	return cap(a) % ((1 << 11) + 2048)
    }
    
    
    func AddMul(x int) int {
    	// amd64:"LEAQ\t1"
    	return 2*x + 1
    }
    
    func MULA(a, b, c uint32) (uint32, uint32, uint32) {
    	// arm:`MULA`,-`MUL\s`
    	// arm64:`MADDW`,-`MULW`
    	r0 := a*b + c
    
    	// arm:`MULA`,-`MUL\s`
    
    	// arm64:`MADDW`,-`MULW`
    	r1 := c*79 + a
    
    	// arm:`ADD`,-`MULA`,-`MUL\s`
    
    	// arm64:`ADD`,-`MADD`,-`MULW`
    
    	// ppc64:`ADD`,-`MULLD`
    	// ppc64le:`ADD`,-`MULLD`
    
    	r2 := b*64 + c
    	return r0, r1, r2
    
    
    func MULS(a, b, c uint32) (uint32, uint32, uint32) {
    	// arm/7:`MULS`,-`MUL\s`
    
    	// arm/6:`SUB`,`MUL\s`,-`MULS`
    
    	// arm64:`MSUBW`,-`MULW`
    	r0 := c - a*b
    
    	// arm/7:`MULS`,-`MUL\s`
    	// arm/6:`SUB`,`MUL\s`,-`MULS`
    
    	// arm64:`MSUBW`,-`MULW`
    	r1 := a - c*79
    
    	// arm/7:`SUB`,-`MULS`,-`MUL\s`
    
    	// arm64:`SUB`,-`MSUBW`,-`MULW`
    
    	// ppc64:`SUB`,-`MULLD`
    	// ppc64le:`SUB`,-`MULLD`
    
    	r2 := c - b*64
    	return r0, r1, r2
    }
    
    
    func addSpecial(a, b, c uint32) (uint32, uint32, uint32) {
    	// amd64:`INCL`
    	a++
    	// amd64:`DECL`
    	b--
    	// amd64:`SUBL.*-128`
    	c += 128
    	return a, b, c
    }
    
    
    // Divide -> shift rules usually require fixup for negative inputs.
    // If the input is non-negative, make sure the fixup is eliminated.
    func divInt(v int64) int64 {
    	if v < 0 {
    		return 0
    	}
    	// amd64:-`.*SARQ.*63,`, -".*SHRQ", ".*SARQ.*[$]9,"
    	return v / 512
    }
    
    
    // The reassociate rules "x - (z + C) -> (x - z) - C" and
    // "(z + C) -x -> C + (z - x)" can optimize the following cases.
    func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) {
    	// arm64:"SUB","ADD\t[$]2"
    
    	// ppc64:"SUB","ADD\t[$]2"
    	// ppc64le:"SUB","ADD\t[$]2"
    
    	r0 := (i0 + 3) - (j0 + 1)
    	// arm64:"SUB","SUB\t[$]4"
    
    	// ppc64:"SUB","ADD\t[$]-4"
    	// ppc64le:"SUB","ADD\t[$]-4"
    
    	r1 := (i1 - 3) - (j1 + 1)
    	// arm64:"SUB","ADD\t[$]4"
    
    	// ppc64:"SUB","ADD\t[$]4"
    	// ppc64le:"SUB","ADD\t[$]4"
    
    	r2 := (i2 + 3) - (j2 - 1)
    	// arm64:"SUB","SUB\t[$]2"
    
    	// ppc64:"SUB","ADD\t[$]-2"
    	// ppc64le:"SUB","ADD\t[$]-2"
    
    	r3 := (i3 - 3) - (j3 - 1)
    	return r0, r1, r2, r3
    }
    
    // The reassociate rules "x - (z + C) -> (x - z) - C" and
    // "(C - z) - x -> C - (z + x)" can optimize the following cases.
    func constantFold2(i0, j0, i1, j1 int) (int, int) {
    	// arm64:"ADD","MOVD\t[$]2","SUB"
    
    	// ppc64le: `SUBC\tR[0-9]+,\s[$]2,\sR`
    	// ppc64: `SUBC\tR[0-9]+,\s[$]2,\sR`
    
    	r0 := (3 - i0) - (j0 + 1)
    	// arm64:"ADD","MOVD\t[$]4","SUB"
    
    	// ppc64le: `SUBC\tR[0-9]+,\s[$]4,\sR`
    	// ppc64: `SUBC\tR[0-9]+,\s[$]4,\sR`
    
    	r1 := (3 - i1) - (j1 - 1)
    	return r0, r1
    }
    
    func constantFold3(i, j int) int {
    	// arm64: "MOVD\t[$]30","MUL",-"ADD",-"LSL"
    
    	// ppc64:"MULLD\t[$]30","MULLD"
    	// ppc64le:"MULLD\t[$]30","MULLD"