Newer
Older
// asmcheck
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package codegen
// This file contains codegen tests related to arithmetic
// simplifications and optimizations on integer types.
// For codegen tests on float types, see floats.go.
// ----------------- //
// Subtraction //
// ----------------- //
func SubMem(arr []int, b, c, d int) int {
// 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)`
// amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)`
arr[2] -= b
// 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)`
// amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)`
// 386:`DECL\s16\([A-Z]+\)`
arr[4]--
// 386:`ADDL\s[$]-20,\s20\([A-Z]+\)`
arr[5] -= 20
// 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+`
ef -= arr[b]
// 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)`
arr[c] -= b
// 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)`
arr[d] -= 15
// 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)`
arr[b]--
// amd64:`DECQ\s64\([A-Z]+\)`
arr[8]--
// 386:"SUBL\t4"
// amd64:"SUBQ\t8"
return arr[0] - arr[1]
}
// -------------------- //
// Multiplication //
// -------------------- //
func Pow2Muls(n1, n2 int) (int, int) {
// amd64:"SHLQ\t[$]5",-"IMULQ"
// 386:"SHLL\t[$]5",-"IMULL"
// arm:"SLL\t[$]5",-"MUL"
// arm64:"LSL\t[$]5",-"MUL"
// ppc64:"SLD\t[$]5",-"MUL"
// ppc64le:"SLD\t[$]5",-"MUL"
a := n1 * 32
// amd64:"SHLQ\t[$]6",-"IMULQ"
// 386:"SHLL\t[$]6",-"IMULL"
// arm:"SLL\t[$]6",-"MUL"
// arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL`
// ppc64:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
// ppc64le:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
b := -64 * n2
return a, b
}
func Mul_96(n int) int {
// amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ`
// 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL`
// arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
// arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
return n * 96
}
func MulMemSrc(a []uint32, b []float32) {
// 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+`
a[0] *= a[1]
// 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
// amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
b[0] *= b[1]
}
// Multiplications merging tests
func MergeMuls1(n int) int {
// amd64:"IMUL3Q\t[$]46"
// 386:"IMUL3L\t[$]46"
return 15*n + 31*n // 46n
}
func MergeMuls2(n int) int {
// amd64:"IMUL3Q\t[$]23","ADDQ\t[$]29"
// 386:"IMUL3L\t[$]23","ADDL\t[$]29"
return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29
}
func MergeMuls3(a, n int) int {
// amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19"
// 386:"ADDL\t[$]19",-"IMULL\t[$]19"
return a*n + 19*n // (a+19)n
}
func MergeMuls4(n int) int {
// amd64:"IMUL3Q\t[$]14"
// 386:"IMUL3L\t[$]14"
return 23*n - 9*n // 14n
}
func MergeMuls5(a, n int) int {
// amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19"
// 386:"ADDL\t[$]-19",-"IMULL\t[$]19"
return a*n - 19*n // (a-19)n
}
// -------------- //
// Division //
// -------------- //
func DivMemSrc(a []float64) {
// 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
// amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
a[0] /= a[1]
}
func Pow2Divs(n1 uint, n2 int) (uint, int) {
// 386:"SHRL\t[$]5",-"DIVL"
// amd64:"SHRQ\t[$]5",-"DIVQ"
// arm:"SRL\t[$]5",-".*udiv"
// arm64:"LSR\t[$]5",-"UDIV"
// ppc64:"SRD"
// ppc64le:"SRD"
a := n1 / 32 // unsigned
// amd64:"SARQ\t[$]6",-"IDIVQ"
// 386:"SARL\t[$]6",-"IDIVL"
// arm:"SRA\t[$]6",-".*udiv"
// arm64:"ASR\t[$]6",-"SDIV"
// ppc64:"SRAD"
// ppc64le:"SRAD"
b := n2 / 64 // signed
return a, b
}
// Check that constant divisions get turned into MULs
func ConstDivs(n1 uint, n2 int) (uint, int) {
// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
// arm64:`MOVD`,`UMULH`,-`DIV`
// arm:`MOVW`,`MUL`,-`.*udiv`
a := n1 / 17 // unsigned
// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
// arm64:`MOVD`,`SMULH`,-`DIV`
// arm:`MOVW`,`MUL`,-`.*udiv`
b := n2 / 17 // signed
return a, b
}
func FloatDivs(a []float32) float32 {
// amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
// 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
return a[1] / a[2]
}
func Pow2Mods(n1 uint, n2 int) (uint, int) {
// 386:"ANDL\t[$]31",-"DIVL"
// amd64:"ANDQ\t[$]31",-"DIVQ"
// arm:"AND\t[$]31",-".*udiv"
// arm64:"AND\t[$]31",-"UDIV"
// ppc64:"ANDCC\t[$]31"
// ppc64le:"ANDCC\t[$]31"
a := n1 % 32 // unsigned
// 386:"SHRL",-"IDIVL"
// amd64:"SHRQ",-"IDIVQ"
// arm:"SRA",-".*udiv"
// arm64:"ASR",-"REM"
// ppc64:"SRAD"
// ppc64le:"SRAD"
b := n2 % 64 // signed
return a, b
}
// Check that signed divisibility checks get converted to AND on low bits
func Pow2DivisibleSigned(n int) bool {
// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
// arm:"AND\t[$]63",-".*udiv",-"SRA"
// arm64:"AND\t[$]63",-"UDIV",-"ASR"
// ppc64:"ANDCC\t[$]63",-"SRAD"
// ppc64le:"ANDCC\t[$]63",-"SRAD"
return n%64 == 0 // signed
}
// Check that constant modulo divs get turned into MULs
func ConstMods(n1 uint, n2 int) (uint, int) {
// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
// arm64:`MOVD`,`UMULH`,-`DIV`
// arm:`MOVW`,`MUL`,-`.*udiv`
a := n1 % 17 // unsigned
// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
// arm64:`MOVD`,`SMULH`,-`DIV`
// arm:`MOVW`,`MUL`,-`.*udiv`
b := n2 % 17 // signed
return a, b
}
// Check that divisibility checks x%c==0 are converted to MULs and rotates
func Divisible(n1 uint, n2 int) (bool, bool, bool, bool) {
// amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ"
// 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ"
// arm64:"MOVD\t[$]-6148914691236517205","MUL","ROR",-"DIV"
// arm:"MUL","CMP\t[$]715827882",-".*udiv"
// ppc64:"MULLD","ROTL\t[$]63"
// ppc64le:"MULLD","ROTL\t[$]63"
// amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ"
// 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ"
// arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV"
// arm:"MUL","CMP\t[$]226050910",-".*udiv"
// ppc64:"MULLD",-"ROTL"
// ppc64le:"MULLD",-"ROTL"
oddU := n1%19 == 0
// amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ"
// 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ"
// arm64:"MUL","ADD\t[$]3074457345618258602","ROR",-"DIV"
// arm:"MUL","ADD\t[$]715827882",-".*udiv"
// ppc64:"MULLD","ADD","ROTL\t[$]63"
// ppc64le:"MULLD","ADD","ROTL\t[$]63"
evenS := n2%6 == 0
// amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ"
// 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ"
// arm64:"MUL","ADD\t[$]485440633518672410",-"ROR",-"DIV"
// arm:"MUL","ADD\t[$]113025455",-".*udiv"
// ppc64:"MULLD","ADD",-"ROTL"
// ppc64le:"MULLD","ADD",-"ROTL"
oddS := n2%19 == 0
return evenU, oddU, evenS, oddS
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Check that fix-up code is not generated for divisions where it has been proven that
// that the divisor is not -1 or that the dividend is > MinIntNN.
func NoFix64A(divr int64) (int64, int64) {
var d int64 = 42
var e int64 = 84
if divr > 5 {
d /= divr // amd64:-"JMP"
e %= divr // amd64:-"JMP"
}
return d, e
}
func NoFix64B(divd int64) (int64, int64) {
var d int64
var e int64
var divr int64 = -1
if divd > -9223372036854775808 {
d = divd / divr // amd64:-"JMP"
e = divd % divr // amd64:-"JMP"
}
return d, e
}
func NoFix32A(divr int32) (int32, int32) {
var d int32 = 42
var e int32 = 84
if divr > 5 {
// amd64:-"JMP"
// 386:-"JMP"
d /= divr
// amd64:-"JMP"
// 386:-"JMP"
e %= divr
}
return d, e
}
func NoFix32B(divd int32) (int32, int32) {
var d int32
var e int32
var divr int32 = -1
if divd > -2147483648 {
// amd64:-"JMP"
// 386:-"JMP"
d = divd / divr
// amd64:-"JMP"
// 386:-"JMP"
e = divd % divr
}
return d, e
}
func NoFix16A(divr int16) (int16, int16) {
var d int16 = 42
var e int16 = 84
if divr > 5 {
// amd64:-"JMP"
// 386:-"JMP"
d /= divr
// amd64:-"JMP"
// 386:-"JMP"
e %= divr
}
return d, e
}
func NoFix16B(divd int16) (int16, int16) {
var d int16
var e int16
var divr int16 = -1
if divd > -32768 {
// amd64:-"JMP"
// 386:-"JMP"
d = divd / divr
// amd64:-"JMP"
// 386:-"JMP"
e = divd % divr
}
return d, e
}
// Check that len() and cap() calls divided by powers of two are
// optimized into shifts and ands
func LenDiv1(a []int) int {
// 386:"SHRL\t[$]10"
// amd64:"SHRQ\t[$]10"
// arm64:"LSR\t[$]10",-"SDIV"
// arm:"SRL\t[$]10",-".*udiv"
// ppc64:"SRD"\t[$]10"
// ppc64le:"SRD"\t[$]10"
return len(a) / 1024
}
func LenDiv2(s string) int {
// 386:"SHRL\t[$]11"
// amd64:"SHRQ\t[$]11"
// arm64:"LSR\t[$]11",-"SDIV"
// arm:"SRL\t[$]11",-".*udiv"
// ppc64:"SRD\t[$]11"
// ppc64le:"SRD\t[$]11"
return len(s) / (4097 >> 1)
}
func LenMod1(a []int) int {
// 386:"ANDL\t[$]1023"
// amd64:"ANDQ\t[$]1023"
// arm64:"AND\t[$]1023",-"SDIV"
// arm/6:"AND",-".*udiv"
// arm/7:"BFC",-".*udiv",-"AND"
// ppc64:"ANDCC\t[$]1023"
// ppc64le:"ANDCC\t[$]1023"
return len(a) % 1024
}
func LenMod2(s string) int {
// 386:"ANDL\t[$]2047"
// amd64:"ANDQ\t[$]2047"
// arm64:"AND\t[$]2047",-"SDIV"
// arm/6:"AND",-".*udiv"
// arm/7:"BFC",-".*udiv",-"AND"
// ppc64:"ANDCC\t[$]2047"
// ppc64le:"ANDCC\t[$]2047"
return len(s) % (4097 >> 1)
}
func CapDiv(a []int) int {
// 386:"SHRL\t[$]12"
// amd64:"SHRQ\t[$]12"
// arm64:"LSR\t[$]12",-"SDIV"
// arm:"SRL\t[$]12",-".*udiv"
// ppc64:"SRD\t[$]12"
// ppc64le:"SRD\t[$]12"
return cap(a) / ((1 << 11) + 2048)
}
func CapMod(a []int) int {
// 386:"ANDL\t[$]4095"
// amd64:"ANDQ\t[$]4095"
// arm64:"AND\t[$]4095",-"SDIV"
// arm/6:"AND",-".*udiv"
// arm/7:"BFC",-".*udiv",-"AND"
// ppc64:"ANDCC\t[$]4095"
// ppc64le:"ANDCC\t[$]4095"
return cap(a) % ((1 << 11) + 2048)
}
func AddMul(x int) int {
// amd64:"LEAQ\t1"
return 2*x + 1
}
func MULA(a, b, c uint32) (uint32, uint32, uint32) {
// arm:`MULA`,-`MUL\s`
// arm64:`MADDW`,-`MULW`
r0 := a*b + c
// arm64:`MADDW`,-`MULW`
r1 := c*79 + a
// arm64:`ADD`,-`MADD`,-`MULW`
r2 := b*64 + c
return r0, r1, r2
func MULS(a, b, c uint32) (uint32, uint32, uint32) {
// arm/7:`MULS`,-`MUL\s`
// arm64:`MSUBW`,-`MULW`
r0 := c - a*b
// arm/7:`MULS`,-`MUL\s`
// arm/6:`SUB`,`MUL\s`,-`MULS`
// arm64:`MSUBW`,-`MULW`
r1 := a - c*79
// arm64:`SUB`,-`MSUBW`,-`MULW`
r2 := c - b*64
return r0, r1, r2
}