Skip to content
Snippets Groups Projects
loader.go 67.4 KiB
Newer Older
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

	"cmd/internal/goobj2"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/sym"
	"os"
	"sort"
	"strconv"
	"strings"
)

var _ = fmt.Print

// Sym encapsulates a global symbol index, used to identify a specific
// Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
type Sym int

// Relocs encapsulates the set of relocations on a given symbol; an
// instance of this type is returned by the Loader Relocs() method.
type Relocs struct {
	Count int // number of relocs

	li int      // local index of symbol whose relocs we're examining
	r  *oReader // object reader for containing package
	l  *Loader  // loader
}

// Reloc contains the payload for a specific relocation.
// TODO: replace this with sym.Reloc, once we change the
// relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc.
type Reloc struct {
	Off  int32            // offset to rewrite
	Size uint8            // number of bytes to rewrite: 0, 1, 2, or 4
	Type objabi.RelocType // the relocation type
	Add  int64            // addend
	Sym  Sym              // global index of symbol the reloc addresses
}

// oReader is a wrapper type of obj.Reader, along with some
// extra information.
// TODO: rename to objReader once the old one is gone?
type oReader struct {
	*goobj2.Reader
	unit      *sym.CompilationUnit
	version   int    // version of static symbol
	flags     uint32 // read from object file
	syms      []Sym // Sym's global index, indexed by local index
type objIdx struct {
// objSym represents a symbol in an object file. It is a tuple of
// the object and the symbol's local index.
// For external symbols, r is l.extReader, s is its index into the
// payload array.
// {nil, 0} represents the nil symbol.
type objSym struct {
	r *oReader
	s int // local index
}

type nameVer struct {
	name string
	v    int
}

type bitmap []uint32

// set the i-th bit.
func (bm bitmap) set(i Sym) {
	n, r := uint(i)/32, uint(i)%32
	bm[n] |= 1 << r
}

// unset the i-th bit.
func (bm bitmap) unset(i Sym) {
	n, r := uint(i)/32, uint(i)%32
	bm[n] &^= (1 << r)
}

// whether the i-th bit is set.
func (bm bitmap) has(i Sym) bool {
	n, r := uint(i)/32, uint(i)%32
	return bm[n]&(1<<r) != 0
}

// return current length of bitmap in bits.
func (bm bitmap) len() int {
	return len(bm) * 32
}
func makeBitmap(n int) bitmap {
	return make(bitmap, (n+31)/32)
}

// growBitmap insures that the specified bitmap has enough capacity,
// reallocating (doubling the size) if needed.
func growBitmap(reqLen int, b bitmap) bitmap {
	curLen := b.len()
	if reqLen > curLen {
		b = append(b, makeBitmap(reqLen+1-curLen)...)
// A Loader loads new object files and resolves indexed symbol references.
//
// Notes on the layout of global symbol index space:
//
// TODO: rework index space reservation.
//
// - Go object files are read before host object files; each Go object
//   read adds its defined (package + non-package) symbols to the global
//   index space.
//
// - In loader.LoadRefs(), the loader makes a sweep through all of the
//   non-package references in each object file and allocates sym indices
//   for any symbols that have not yet been defined (start of this space
//   is marked by loader.extStart).
//
// - Host object file loading happens; the host object loader does a
//   name/version lookup for each symbol it finds; this can wind up
//   extending the external symbol index space range. The host object
//   loader currently stores symbol payloads in sym.Symbol objects,
//   which get handed off to the loader.
//
// - A given external symbol (Sym) either has a sym.Symbol acting as
//   its backing store (this will continue to be the case until we
//   finish rewriting the host object loader to work entirely with
//   loader.Sym) or it has a "payload" backing store (represented by
//   extSymPayload). Newly created external symbols (created by
//   a call to AddExtSym or equivalent) start out in the "has payload"
//   state, and continue until installSym is called for the sym
//   index in question.
//
// - At some point (when the wayfront is pushed through all of the
//   linker), all external symbols will be payload-based, and we can
//   get rid of the loader.Syms array.
//
// - Each symbol gets a unique global index. For duplicated and
//   overwriting/overwritten symbols, the second (or later) appearance
//   of the symbol gets the same global index as the first appearance.
	start       map[*oReader]Sym // map from object file to its start index
	objs        []objIdx         // sorted by start index (i.e. objIdx.i)
	extStart    Sym              // from this index on, the symbols are externally defined
	builtinSyms []Sym            // global index of builtin symbols
	ocache      int              // index (into 'objs') of most recent lookup
	objSyms []objSym // global index mapping to local index

	symsByName    [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal
	extStaticSyms map[nameVer]Sym   // externally defined static symbols, keyed by name
	extReader    *oReader  // a dummy oReader, for external symbols
	payloadBatch []extSymPayload
	payloads     []*extSymPayload // contents of linker-materialized external syms
	values       []int64          // symbol values, indexed by global sym index
	itablink map[Sym]struct{} // itablink[j] defined if j is go.itablink.*

	objByPkg map[string]*oReader // map package path to its Go object reader

	Syms     []*sym.Symbol // indexed symbols. XXX we still make sym.Symbol for now.
	symBatch []sym.Symbol  // batch of symbols.
	anonVersion int // most recently assigned ext static sym pseudo-version

	// Bitmaps and other side structures used to store data used to store
	// symbol flags/attributes; these are to be accessed via the
	// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
	// visit the comments on these methods for more details on the
	// semantics / interpretation of the specific flags or attribute.
	attrReachable        bitmap // reachable symbols, indexed by global index
	attrOnList           bitmap // "on list" symbols, indexed by global index
	attrLocal            bitmap // "local" symbols, indexed by global index
	attrNotInSymbolTable bitmap // "not in symtab" symbols, indexed by glob idx
	attrVisibilityHidden bitmap // hidden symbols, indexed by ext sym index
	attrDuplicateOK      bitmap // dupOK symbols, indexed by ext sym index
	attrShared           bitmap // shared symbols, indexed by ext sym index
	attrExternal         bitmap // external symbols, indexed by ext sym index

	attrReadOnly         map[Sym]bool     // readonly data for this sym
	attrTopFrame         map[Sym]struct{} // top frame symbols
	attrSpecial          map[Sym]struct{} // "special" frame symbols
	attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
	attrCgoExportStatic  map[Sym]struct{} // "cgo_export_static" symbols
	// Outer and Sub relations for symbols.
	// TODO: figure out whether it's more efficient to just have these
	// as fields on extSymPayload (note that this won't be a viable
	// strategy if somewhere in the linker we set sub/outer for a
	// non-external sym).
	outer map[Sym]Sym
	sub   map[Sym]Sym

	align map[Sym]int32 // stores alignment for symbols

	dynimplib  map[Sym]string      // stores Dynimplib symbol attribute
	dynimpvers map[Sym]string      // stores Dynimpvers symbol attribute
	localentry map[Sym]uint8       // stores Localentry symbol attribute
	extname    map[Sym]string      // stores Extname symbol attribute
	elfType    map[Sym]elf.SymType // stores elf type symbol property
	symFile    map[Sym]string      // stores file for shlib-derived syms
	plt        map[Sym]int32       // stores dynimport for pe objects
	got        map[Sym]int32       // stores got for pe objects
	// Used to implement field tracking; created during deadcode if
	// field tracking is enabled. Reachparent[K] contains the index of
	// the symbol that triggered the marking of symbol K as live.
	Reachparent []Sym

	relocBatch []sym.Reloc // for bulk allocation of relocations

	flags uint32

	strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled

	elfsetstring elfsetstringFunc
type elfsetstringFunc func(s *sym.Symbol, str string, off int)

// extSymPayload holds the payload (data + relocations) for linker-synthesized
// external symbols (note that symbol value is stored in a separate slice).
type extSymPayload struct {
	name   string // TODO: would this be better as offset into str table?
	size   int64
	ver    int
	kind   sym.SymKind
	objidx uint32 // index of original object if sym made by cloneToExternal
	gotype Sym    // Gotype (0 if not present)
const (
	// Loader.flags
	FlagStrictDups = 1 << iota
)

func NewLoader(flags uint32, elfsetstring elfsetstringFunc) *Loader {
	nbuiltin := goobj2.NBuiltin()
		start:                make(map[*oReader]Sym),
		objs:                 []objIdx{{}}, // reserve index 0 for nil symbol
		objSyms:              []objSym{{}}, // reserve index 0 for nil symbol
		extReader:            &oReader{},
		symsByName:           [2]map[string]Sym{make(map[string]Sym), make(map[string]Sym)},
		objByPkg:             make(map[string]*oReader),
		outer:                make(map[Sym]Sym),
		sub:                  make(map[Sym]Sym),
		align:                make(map[Sym]int32),
		dynimplib:            make(map[Sym]string),
		dynimpvers:           make(map[Sym]string),
		localentry:           make(map[Sym]uint8),
		extname:              make(map[Sym]string),
		attrReadOnly:         make(map[Sym]bool),
		elfType:              make(map[Sym]elf.SymType),
		symFile:              make(map[Sym]string),
		plt:                  make(map[Sym]int32),
		got:                  make(map[Sym]int32),
		attrTopFrame:         make(map[Sym]struct{}),
		attrSpecial:          make(map[Sym]struct{}),
		attrCgoExportDynamic: make(map[Sym]struct{}),
		attrCgoExportStatic:  make(map[Sym]struct{}),
		itablink:             make(map[Sym]struct{}),
		extStaticSyms:        make(map[nameVer]Sym),
		builtinSyms:          make([]Sym, nbuiltin),
		flags:                flags,
		elfsetstring:         elfsetstring,
	}
}

// Add object file r, return the start index.
func (l *Loader) addObj(pkg string, r *oReader) Sym {
	if _, ok := l.start[r]; ok {
		panic("already added")
	}
	pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
	if _, ok := l.objByPkg[pkg]; !ok {
		l.objByPkg[pkg] = r
	}
	n := r.NSym() + r.NNonpkgdef()
	i := Sym(len(l.objSyms))
	l.objs = append(l.objs, objIdx{r, i})
	l.growValues(int(i) + n - 1)
// Add a symbol from an object file, return the global index and whether it is added.
// If the symbol already exist, it returns the index of that symbol.
func (l *Loader) AddSym(name string, ver int, r *oReader, li int, dupok bool, typ sym.SymKind) (Sym, bool) {
	if l.extStart != 0 {
		panic("AddSym called after AddExtSym is called")
	}
	i := Sym(len(l.objSyms))
	addToGlobal := func() {
		l.objSyms = append(l.objSyms, objSym{r, li})
		return i, true // unnamed aux symbol
	}
	if ver == r.version {
		// Static symbol. Add its global index but don't
		// add to name lookup table, as it cannot be
		// referenced by name.
	oldi, existed := l.symsByName[ver][name]
	if !existed {
		l.symsByName[ver][name] = i
		addToGlobal()
		return i, true
	}
	// symbol already exists
	if dupok {
		if l.flags&FlagStrictDups != 0 {
			l.checkdup(name, r, li, oldi)
		}
		return oldi, false
	}
	oldr, oldli := l.toLocal(oldi)
	oldsym := goobj2.Sym{}
	oldsym.Read(oldr.Reader, oldr.SymOff(oldli))
	if oldsym.Dupok() {
		return oldi, false
	}
	overwrite := r.DataSize(li) != 0
	if overwrite {
		// new symbol overwrites old symbol.
		oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type)]
		if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) {
			log.Fatalf("duplicated definition of symbol " + name)
		}
		l.objSyms[oldi] = objSym{r, li}
	} else {
		// old symbol overwrites new symbol.
		if !typ.IsData() { // only allow overwriting data symbol
			log.Fatalf("duplicated definition of symbol " + name)
// newExtSym creates a new external sym with the specified
// name/version.
func (l *Loader) newExtSym(name string, ver int) Sym {
	i := Sym(len(l.objSyms))
	if l.extStart == 0 {
		l.extStart = i
	}
	l.growSyms(int(i))
	pi := l.newPayload(name, ver)
	l.objSyms = append(l.objSyms, objSym{l.extReader, int(pi)})
	l.extReader.syms = append(l.extReader.syms, i)
// Add an external symbol (without index). Return the index of newly added
// symbol, or 0 if not added.
func (l *Loader) AddExtSym(name string, ver int) Sym {
	}
	i = l.newExtSym(name, ver)
	static := ver >= sym.SymVerStatic || ver < 0
		l.extStaticSyms[nameVer{name, ver}] = i
	return i
}

// LookupOrCreateSym looks up the symbol with the specified name/version,
// returning its Sym index if found. If the lookup fails, a new external
// Sym will be created, entered into the lookup tables, and returned.
func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
	i := l.Lookup(name, ver)
	if i != 0 {
		return i
	}
	i = l.newExtSym(name, ver)
	static := ver >= sym.SymVerStatic || ver < 0
	if static {
		l.extStaticSyms[nameVer{name, ver}] = i
	} else {
		l.symsByName[ver][name] = i
	}
func (l *Loader) IsExternal(i Sym) bool {
	return l.isExtReader(r)
}


func (l *Loader) isExtReader(r *oReader) bool {
	return r == l.extReader
}

// For external symbol, return its index in the payloads array.
// XXX result is actually not a global index. We (ab)use the Sym type
// so we don't need conversion for accessing bitmaps.
func (l *Loader) extIndex(i Sym) Sym {
	_, li := l.toLocal(i)
	return Sym(li)
}

// Get a new payload for external symbol, return its index in
// the payloads array.
func (l *Loader) newPayload(name string, ver int) int {
	pi := len(l.payloads)
	pp := l.allocPayload()
	pp.name = name
	pp.ver = ver
	l.payloads = append(l.payloads, pp)
	l.growExtAttrBitmaps()
	return pi
// getPayload returns a pointer to the extSymPayload struct for an
// external symbol if the symbol has a payload. Will panic if the
// symbol in question is bogus (zero or not an external sym).
func (l *Loader) getPayload(i Sym) *extSymPayload {
		panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
	}
	return l.payloads[pi]
}

// allocPayload allocates a new payload.
func (l *Loader) allocPayload() *extSymPayload {
	batch := l.payloadBatch
	if len(batch) == 0 {
		batch = make([]extSymPayload, 1000)
	}
	p := &batch[0]
	l.payloadBatch = batch[1:]
	return p
func (ms *extSymPayload) Grow(siz int64) {
	if int64(int(siz)) != siz {
		log.Fatalf("symgrow size %d too long", siz)
	}
	if int64(len(ms.data)) >= siz {
		return
	}
	if cap(ms.data) < int(siz) {
		cl := len(ms.data)
		ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
		ms.data = ms.data[0:cl]
	}
	ms.data = ms.data[:siz]
}

// Ensure Syms slice has enough space.
func (l *Loader) growSyms(i int) {
	n := len(l.Syms)
	if n > i {
		return
	}
	l.Syms = append(l.Syms, make([]*sym.Symbol, i+1-n)...)
	l.growAttrBitmaps(int(i) + 1)
// Convert a local index to a global index.
func (l *Loader) toGlobal(r *oReader, i int) Sym {
// Convert a global index to a local index.
func (l *Loader) toLocal(i Sym) (*oReader, int) {
	return l.objSyms[i].r, int(l.objSyms[i].s)
// Resolve a local symbol reference. Return global index.
func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym {
	var rr *oReader
	switch p := s.PkgIdx; p {
	case goobj2.PkgIdxInvalid:
		if s.SymIdx != 0 {
			panic("bad sym ref")
		}
		return 0
	case goobj2.PkgIdxNone:
		i := int(s.SymIdx) + r.NSym()
		return l.builtinSyms[s.SymIdx]
	case goobj2.PkgIdxSelf:
		rr = r
	default:
		pkg := r.Pkg(int(p))
		var ok bool
		rr, ok = l.objByPkg[pkg]
		if !ok {
			log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib)
		}
	return l.toGlobal(rr, int(s.SymIdx))
// Look up a symbol by name, return global index, or 0 if not found.
// This is more like Syms.ROLookup than Lookup -- it doesn't create
// new symbol.
func (l *Loader) Lookup(name string, ver int) Sym {
	if ver >= sym.SymVerStatic || ver < 0 {
		return l.extStaticSyms[nameVer{name, ver}]
	}
	return l.symsByName[ver][name]
// Check that duplicate symbols have same contents.
func (l *Loader) checkdup(name string, r *oReader, li int, dup Sym) {
	p := r.Data(li)
	if strings.HasPrefix(name, "go.info.") {
		p, _ = patchDWARFName1(p, r)
	}
	rdup, ldup := l.toLocal(dup)
	pdup := rdup.Data(ldup)
	if strings.HasPrefix(name, "go.info.") {
		pdup, _ = patchDWARFName1(pdup, rdup)
	}
	if bytes.Equal(p, pdup) {
		return
	}
	reason := "same length but different contents"
	if len(p) != len(pdup) {
		reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
	}
	fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)

	// For the moment, whitelist DWARF subprogram DIEs for
	// auto-generated wrapper functions. What seems to happen
	// here is that we get different line numbers on formal
	// params; I am guessing that the pos is being inherited
	// from the spot where the wrapper is needed.
	whitelist := strings.HasPrefix(name, "go.info.go.interface") ||
		strings.HasPrefix(name, "go.info.go.builtin") ||
		strings.HasPrefix(name, "go.debuglines")
	if !whitelist {
		l.strictDupMsgs++
	}
}

func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }

// Number of total symbols.
func (l *Loader) NSym() int {
	return len(l.objSyms)
// Number of defined Go symbols.
func (l *Loader) NDef() int {
	return int(l.extStart)
}

// Returns the raw (unpatched) name of the i-th symbol.
func (l *Loader) RawSymName(i Sym) string {
	osym := goobj2.Sym{}
	osym.Read(r.Reader, r.SymOff(li))
	return osym.Name
}

// Returns the (patched) name of the i-th symbol.
func (l *Loader) SymName(i Sym) string {
	osym := goobj2.Sym{}
	osym.Read(r.Reader, r.SymOff(li))
	return strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
}

// Returns the version of the i-th symbol.
func (l *Loader) SymVersion(i Sym) int {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.ver
	}
	r, li := l.toLocal(i)
	osym := goobj2.Sym{}
	osym.Read(r.Reader, r.SymOff(li))
	return int(abiToVer(osym.ABI, r.version))
}

// Returns the type of the i-th symbol.
func (l *Loader) SymType(i Sym) sym.SymKind {
		pp := l.getPayload(i)
		if pp != nil {
			return pp.kind
		}
	osym := goobj2.Sym{}
	osym.Read(r.Reader, r.SymOff(li))
	return sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]
}

// Returns the attributes of the i-th symbol.
func (l *Loader) SymAttr(i Sym) uint8 {
		// TODO: do something? External symbols have different representation of attributes. For now, ReflectMethod is the only thing matters and it cannot be set by external symbol.
	osym := goobj2.Sym{}
	osym.Read(r.Reader, r.SymOff(li))
	return osym.Flag
}

// AttrReachable returns true for symbols that are transitively
// referenced from the entry points. Unreachable symbols are not
// written to the output.
func (l *Loader) AttrReachable(i Sym) bool {
	return l.attrReachable.has(i)
}

// SetAttrReachable sets the reachability property for a symbol (see
// AttrReachable).
func (l *Loader) SetAttrReachable(i Sym, v bool) {
	if v {
		l.attrReachable.set(i)
	} else {
		l.attrReachable.unset(i)
	}
}

// AttrOnList returns true for symbols that are on some list (such as
// the list of all text symbols, or one of the lists of data symbols)
// and is consulted to avoid bugs where a symbol is put on a list
// twice.
func (l *Loader) AttrOnList(i Sym) bool {
	return l.attrOnList.has(i)
}

// SetAttrOnList sets the "on list" property for a symbol (see
// AttrOnList).
func (l *Loader) SetAttrOnList(i Sym, v bool) {
	if v {
		l.attrOnList.set(i)
	} else {
		l.attrOnList.unset(i)
	}
}

// AttrLocal returns true for symbols that are only visible within the
// module (executable or shared library) being linked. This attribute
// is applied to thunks and certain other linker-generated symbols.
func (l *Loader) AttrLocal(i Sym) bool {
	return l.attrLocal.has(i)
}

// SetAttrLocal the "local" property for a symbol (see AttrLocal above).
func (l *Loader) SetAttrLocal(i Sym, v bool) {
	if v {
		l.attrLocal.set(i)
	} else {
		l.attrLocal.unset(i)
	}
}

// AttrNotInSymbolTable returns true for symbols that should not be
// added to the symbol table of the final generated load module.
func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
	return l.attrNotInSymbolTable.has(i)
}

// SetAttrNotInSymbolTable the "not in symtab" property for a symbol
// (see AttrNotInSymbolTable above).
func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
	if v {
		l.attrNotInSymbolTable.set(i)
	} else {
		l.attrNotInSymbolTable.unset(i)
	}
}

// AttrVisibilityHidden symbols returns true for ELF symbols with
// visibility set to STV_HIDDEN. They become local symbols in
// the final executable. Only relevant when internally linking
// on an ELF platform.
func (l *Loader) AttrVisibilityHidden(i Sym) bool {
	return l.attrVisibilityHidden.has(l.extIndex(i))
}

// SetAttrVisibilityHidden sets the "hidden visibility" property for a
// symbol (see AttrVisibilityHidden).
func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
		panic("tried to set visibility attr on non-external symbol")
	}
	if v {
		l.attrVisibilityHidden.set(l.extIndex(i))
		l.attrVisibilityHidden.unset(l.extIndex(i))
	}
}

// AttrDuplicateOK returns true for a symbol that can be present in
// multiple object files.
func (l *Loader) AttrDuplicateOK(i Sym) bool {
		// TODO: if this path winds up being taken frequently, it
		// might make more sense to copy the flag value out of the object
		// into a larger bitmap during preload.
		r, li := l.toLocal(i)
		osym := goobj2.Sym{}
		osym.Read(r.Reader, r.SymOff(li))
		return osym.Dupok()
	}
	return l.attrDuplicateOK.has(l.extIndex(i))
}

// SetAttrDuplicateOK sets the "duplicate OK" property for an external
// symbol (see AttrDuplicateOK).
func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
		panic("tried to set dupok attr on non-external symbol")
	}
	if v {
		l.attrDuplicateOK.set(l.extIndex(i))
		l.attrDuplicateOK.unset(l.extIndex(i))
	}
}

// AttrShared returns true for symbols compiled with the -shared option.
func (l *Loader) AttrShared(i Sym) bool {
		// TODO: if this path winds up being taken frequently, it
		// might make more sense to copy the flag value out of the
		// object into a larger bitmap during preload.
		r, _ := l.toLocal(i)
		return (r.Flags() & goobj2.ObjFlagShared) != 0
	}
	return l.attrShared.has(l.extIndex(i))
}

// SetAttrShared sets the "shared" property for an external
// symbol (see AttrShared).
func (l *Loader) SetAttrShared(i Sym, v bool) {
		panic("tried to set shared attr on non-external symbol")
	}
	if v {
		l.attrShared.set(l.extIndex(i))
		l.attrShared.unset(l.extIndex(i))
	}
}

// AttrExternal returns true for function symbols loaded from host
// object files.
func (l *Loader) AttrExternal(i Sym) bool {
	return l.attrExternal.has(l.extIndex(i))
}

// SetAttrExternal sets the "external" property for an host object
// symbol (see AttrExternal).
func (l *Loader) SetAttrExternal(i Sym, v bool) {
		panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.RawSymName(i)))
		l.attrExternal.set(l.extIndex(i))
		l.attrExternal.unset(l.extIndex(i))
	}
}

// AttrTopFrame returns true for a function symbol that is an entry
// point, meaning that unwinders should stop when they hit this
// function.
func (l *Loader) AttrTopFrame(i Sym) bool {
	_, ok := l.attrTopFrame[i]
	return ok
}

// SetAttrTopFrame sets the "top frame" property for a symbol (see
// AttrTopFrame).
func (l *Loader) SetAttrTopFrame(i Sym, v bool) {
	if v {
		l.attrTopFrame[i] = struct{}{}
	} else {
		delete(l.attrTopFrame, i)
	}
}

// AttrSpecial returns true for a symbols that do not have their
// address (i.e. Value) computed by the usual mechanism of
// data.go:dodata() & data.go:address().
func (l *Loader) AttrSpecial(i Sym) bool {
	_, ok := l.attrSpecial[i]
	return ok
}

// SetAttrSpecial sets the "special" property for a symbol (see
// AttrSpecial).
func (l *Loader) SetAttrSpecial(i Sym, v bool) {
	if v {
		l.attrSpecial[i] = struct{}{}
	} else {
		delete(l.attrSpecial, i)
	}
}

// AttrCgoExportDynamic returns true for a symbol that has been
// specially marked via the "cgo_export_dynamic" compiler directive
// written by cgo (in response to //export directives in the source).
func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
	_, ok := l.attrCgoExportDynamic[i]
	return ok
}

// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportDynamic).
func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
	if v {
		l.attrCgoExportDynamic[i] = struct{}{}
	} else {
		delete(l.attrCgoExportDynamic, i)
	}
}

// AttrCgoExportStatic returns true for a symbol that has been
// specially marked via the "cgo_export_static" directive
// written by cgo.
func (l *Loader) AttrCgoExportStatic(i Sym) bool {
	_, ok := l.attrCgoExportStatic[i]
	return ok
}

// SetAttrCgoExportStatic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportStatic).
func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
	if v {
		l.attrCgoExportStatic[i] = struct{}{}
	} else {
		delete(l.attrCgoExportStatic, i)
	}
}

// AttrReadOnly returns true for a symbol whose underlying data
// is stored via a read-only mmap.
func (l *Loader) AttrReadOnly(i Sym) bool {
	if v, ok := l.attrReadOnly[i]; ok {
		return v
	}
		return false
	}
	r, _ := l.toLocal(i)
	return r.ReadOnly()
}

// SetAttrReadOnly sets the "cgo_export_dynamic" for a symbol
// (see AttrReadOnly).
func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
	l.attrReadOnly[i] = v
}

// AttrSubSymbol returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
func (l *Loader) AttrSubSymbol(i Sym) bool {
	// we don't explicitly store this attribute any more -- return
	// a value based on the sub-symbol setting.
	return l.OuterSym(i) != 0
}

// AttrContainer returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
func (l *Loader) AttrContainer(i Sym) bool {
	// we don't explicitly store this attribute any more -- return
	// a value based on the sub-symbol setting.
	return l.SubSym(i) != 0
}

// Note that we don't have SetAttrSubSymbol' or 'SetAttrContainer' methods
// in the loader; clients should just use methods like PrependSub
// to establish these relationships

// Returns whether the i-th symbol has ReflectMethod attribute set.
func (l *Loader) IsReflectMethod(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0
}

// Returns whether this is a Go type symbol.
func (l *Loader) IsGoType(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagGoType != 0
}

// Returns whether this is a "go.itablink.*" symbol.
func (l *Loader) IsItabLink(i Sym) bool {
	if _, ok := l.itablink[i]; ok {
		return true
	}
	return false
}

// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
	curLen := len(l.values)
	if reqLen > curLen {
		l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
	}
}

// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
	return l.values[i]
}

// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
	l.values[i] = val
}

// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
		pp := l.getPayload(i)
		if pp != nil {
			return pp.data
		}
// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
	// If an alignment has been recorded, return that.
	if align, ok := l.align[i]; ok {
		return align
	}
	// TODO: would it make sense to return an arch-specific
	// alignment depending on section type? E.g. STEXT => 32,
	// SDATA => 1, etc?
	return 0
}

// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
	// reject bad synbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymAlign")
	}
	// Reject nonsense alignments.
	// TODO: do we need this?
	if align < 0 {
		panic("bad alignment value")
	}
	if align == 0 {
		delete(l.align, i)
	} else {
		// Alignment should be a power of 2.
		if bits.OnesCount32(uint32(align)) != 1 {
			panic("bad alignment value")
		}
		l.align[i] = align
	}
}

// SymDynImplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
	return l.dynimplib[i]
}

// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetDynimplib")
	}
	if value == "" {
		delete(l.dynimplib, i)
	} else {
		l.dynimplib[i] = value
	}
}

// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
	return l.dynimpvers[i]
}

// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetDynimpvers")
	}
	if value == "" {
		delete(l.dynimpvers, i)
	} else {
		l.dynimpvers[i] = value
	}
}

// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
	return l.extname[i]
}

// SetSymExtname sets the  "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetExtname")
	}
	if value == "" {
		delete(l.extname, i)
	} else {
		l.extname[i] = value
	}
}

// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
	if et, ok := l.elfType[i]; ok {
		return et
	}
	return elf.STT_NOTYPE
}

// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymElfType")
	}
	if et == elf.STT_NOTYPE {
		delete(l.elfType, i)
	} else {
		l.elfType[i] = et
	}
}

// SetPlt sets the plt value for pe symbols.
func (l *Loader) SetPlt(i Sym, v int32) {
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol for SetPlt")
	}
	if v == 0 {
		delete(l.plt, i)
	} else {
		l.plt[i] = v
	}
}

// SetGot sets the got value for pe symbols.
func (l *Loader) SetGot(i Sym, v int32) {
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol for SetPlt")
	}
	if v == 0 {
		delete(l.got, i)
	} else {
		l.got[i] = v
	}
}

// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.gotype
	}
	r, li := l.toLocal(i)
	naux := r.NAux(li)
	for j := 0; j < naux; j++ {
		a := goobj2.Aux{}
		a.Read(r.Reader, r.AuxOff(li, j))
		switch a.Type {
		case goobj2.AuxGotype:
			return l.resolve(r, a.Sym)
		}
	}
	return 0
}

// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp.objidx != 0 {
			r := l.objs[pp.objidx].r
			return r.unit
		}
		return nil
	}
	r, _ := l.toLocal(i)
	return r.unit
}

// SymFile returns the file for a symbol, which is normally the
// package the symbol came from (for regular compiler-generated Go
// symbols), but in the case of building with "-linkshared" (when a
// symbol is read from a a shared library), will hold the library
// name.
func (l *Loader) SymFile(i Sym) string {
	if l.IsExternal(i) {
		if f, ok := l.symFile[i]; ok {
			return f
		}
		pp := l.getPayload(i)
		if pp.objidx != 0 {
			r := l.objs[pp.objidx].r
			return r.unit.Lib.File
		}
		return ""
	}
	r, _ := l.toLocal(i)
	return r.unit.Lib.File
}

// SetSymFile sets the file attribute for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymFile(i Sym, file string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymFile")
	}
	if !l.IsExternal(i) {
		panic("can't set file for non-external sym")
	}
	l.symFile[i] = file
}

// SymLocalentry returns the "local entry" value for the specified
// symbol.
func (l *Loader) SymLocalentry(i Sym) uint8 {
	return l.localentry[i]
}

// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetExtname")
	}
	if value == 0 {
		delete(l.localentry, i)
	} else {
		l.localentry[i] = value
	}
}

// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
	return r.NAux(li)
}

// Returns the referred symbol of the j-th aux symbol of the i-th
// symbol.
func (l *Loader) AuxSym(i Sym, j int) Sym {
	a := goobj2.Aux{}
	a.Read(r.Reader, r.AuxOff(li, j))
// ReadAuxSyms reads the aux symbol ids for the specified symbol into the
// slice passed as a parameter. If the slice capacity is not large enough, a new
// larger slice will be allocated. Final slice is returned.
func (l *Loader) ReadAuxSyms(symIdx Sym, dst []Sym) []Sym {
	if l.IsExternal(symIdx) {
		return dst[:0]
	}
	naux := l.NAux(symIdx)
	if naux == 0 {
		return dst[:0]
	}

	if cap(dst) < naux {
		dst = make([]Sym, naux)
	}
	dst = dst[:0]

	r, li := l.toLocal(symIdx)
	for i := 0; i < naux; i++ {
		a := goobj2.Aux{}
		a.Read(r.Reader, r.AuxOff(li, i))
		dst = append(dst, l.resolve(r, a.Sym))
	}

	return dst
}

// PrependSub prepends 'sub' onto the sub list for outer symbol 'outer'.
// Will panic if 'sub' already has an outer sym or sub sym.
// FIXME: should this be instead a method on SymbolBuilder?
func (l *Loader) PrependSub(outer Sym, sub Sym) {
	// NB: this presupposes that an outer sym can't be a sub symbol of
	// some other outer-outer sym (I'm assuming this is true, but I
	// haven't tested exhaustively).
	if l.OuterSym(outer) != 0 {
		panic("outer has outer itself")
	}
	if l.SubSym(sub) != 0 {
		panic("sub set for subsym")
	}
	if l.OuterSym(sub) != 0 {
		panic("outer already set for subsym")
	}
	l.sub[sub] = l.sub[outer]
	l.sub[outer] = sub
	l.outer[sub] = outer
}

// OuterSym gets the outer symbol for host object loaded symbols.
func (l *Loader) OuterSym(i Sym) Sym {
	// FIXME: add check for isExternal?
	return l.outer[i]
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
	// NB: note -- no check for l.isExternal(), since I am pretty sure
	// that later phases in the linker set subsym for "type." syms
	return l.sub[i]
// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
	l.growAttrBitmaps(l.NSym() + 1)
type symWithVal struct {
	s Sym
	v int64
}
type bySymValue []symWithVal

func (s bySymValue) Len() int           { return len(s) }
func (s bySymValue) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }

// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {

	if s == 0 || l.sub[s] == 0 {
		return s
	}

	// Sort symbols using a slice first. Use a stable sort on the off
	// chance that there's more than once symbol with the same value,
	// so as to preserve reproducible builds.
	sl := []symWithVal{}
	for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
		sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
	}
	sort.Stable(bySymValue(sl))

	// Then apply any changes needed to the sub map.
	ns := Sym(0)
	for i := len(sl) - 1; i >= 0; i-- {
		s := sl[i].s
		l.sub[s] = ns
		ns = s
	}

	// Update sub for outer symbol, then return
	l.sub[s] = sl[0].s
	return sl[0].s
}

// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
	if reqLen > l.attrReachable.len() {
		// These are indexed by global symbol
		l.attrReachable = growBitmap(reqLen, l.attrReachable)
		l.attrOnList = growBitmap(reqLen, l.attrOnList)
		l.attrLocal = growBitmap(reqLen, l.attrLocal)
		l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
	l.growExtAttrBitmaps()
}

func (l *Loader) growExtAttrBitmaps() {
	// These are indexed by external symbol index (e.g. l.extIndex(i))
	extReqLen := len(l.payloads)
	if extReqLen > l.attrVisibilityHidden.len() {
		l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
		l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
		l.attrShared = growBitmap(extReqLen, l.attrShared)
		l.attrExternal = growBitmap(extReqLen, l.attrExternal)
// At method returns the j-th reloc for a global symbol.
func (relocs *Relocs) At(j int) Reloc {
	if relocs.l.isExtReader(relocs.r) {
		pp := relocs.l.payloads[relocs.li]
	rel := goobj2.Reloc{}
	rel.Read(relocs.r.Reader, relocs.r.RelocOff(relocs.li, j))
	target := relocs.l.resolve(relocs.r, rel.Sym)
	return Reloc{
		Off:  rel.Off,
		Size: rel.Siz,
		Type: objabi.RelocType(rel.Type),
		Add:  rel.Add,
		Sym:  target,
	}
}

// ReadAll method reads all relocations for a symbol into the
// specified slice. If the slice capacity is not large enough, a new
// larger slice will be allocated. Final slice is returned.
func (relocs *Relocs) ReadAll(dst []Reloc) []Reloc {
	if relocs.Count == 0 {
	}

	if cap(dst) < relocs.Count {
		dst = make([]Reloc, relocs.Count)
	}
	dst = dst[:0]

	if relocs.l.isExtReader(relocs.r) {
		pp := relocs.l.payloads[relocs.li]
	off := relocs.r.RelocOff(relocs.li, 0)
	for i := 0; i < relocs.Count; i++ {
		rel := goobj2.Reloc{}
		rel.Read(relocs.r.Reader, off)
		off += uint32(rel.Size())
		target := relocs.l.resolve(relocs.r, rel.Sym)
		dst = append(dst, Reloc{
			Off:  rel.Off,
			Size: rel.Siz,
			Type: objabi.RelocType(rel.Type),
			Add:  rel.Add,
			Sym:  target,
		})
	}
	return dst
}

// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
	if r == nil {
		panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
	}
	return l.relocs(r, li)
}

// Relocs returns a Relocs object given a local sym index and reader.
func (l *Loader) relocs(r *oReader, li int) Relocs {
	var n int
	if l.isExtReader(r) {
		pp := l.payloads[li]
		n = len(pp.relocs)
	} else {
		n = r.NReloc(li)
	}
// RelocByOff implements sort.Interface for sorting relocations by offset.

type RelocByOff []Reloc

func (x RelocByOff) Len() int           { return len(x) }
func (x RelocByOff) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }

// Preload a package: add autolibs, add symbols to the symbol table.
// Does not read symbol data yet.
func (l *Loader) Preload(arch *sys.Arch, syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64, pn string, flags int) {
	roObject, readonly, err := f.Slice(uint64(length))
	if err != nil {
		log.Fatal("cannot read object file:", err)
	}
	r := goobj2.NewReaderFromBytes(roObject, readonly)
	if r == nil {
		panic("cannot read object file")
	}
	localSymVersion := syms.IncVersion()
	pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
	ndef := r.NSym()
	nnonpkgdef := r.NNonpkgdef()
	or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, make([]Sym, ndef + nnonpkgdef + r.NNonpkgref())}
	lib.ImportStrings = append(lib.ImportStrings, r.Autolib()...)
	// DWARF file table
	nfile := r.NDwarfFile()
	unit.DWARFFileTable = make([]string, nfile)
	for i := range unit.DWARFFileTable {
		unit.DWARFFileTable[i] = r.DwarfFile(i)
	}

	l.growAttrBitmaps(int(istart) + ndef + nnonpkgdef)
	for i, n := 0, ndef+nnonpkgdef; i < n; i++ {
		osym := goobj2.Sym{}
		osym.Read(r, r.SymOff(i))
		name := strings.Replace(osym.Name, "\"\".", pkgprefix, -1)
		v := abiToVer(osym.ABI, localSymVersion)
		gi, added := l.AddSym(name, v, or, i, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)])
		if !added {
			continue
		}
		if strings.HasPrefix(name, "go.itablink.") {
			l.itablink[gi] = struct{}{}
		if strings.HasPrefix(name, "runtime.") {
			if bi := goobj2.BuiltinIdx(name, v); bi != -1 {
				// This is a definition of a builtin symbol. Record where it is.
		if strings.HasPrefix(name, "go.string.") ||
			strings.HasPrefix(name, "runtime.gcbits.") {
			l.SetAttrNotInSymbolTable(gi, true)
	}

	// The caller expects us consuming all the data
	f.MustSeek(length, os.SEEK_CUR)
}

// Make sure referenced symbols are added. Most of them should already be added.
// This should only be needed for referenced external symbols.
func (l *Loader) LoadRefs(arch *sys.Arch, syms *sym.Symbols) {
	for _, o := range l.objs[1:] {
		loadObjRefs(l, o.r, arch, syms)
	}
}

func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch, syms *sym.Symbols) {
	ndef := r.NSym() + r.NNonpkgdef()
	for i, n := 0, r.NNonpkgref(); i < n; i++ {
		osym := goobj2.Sym{}
		name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
		r.syms[ndef+i] = l.AddExtSym(name, v)
	}
}

func abiToVer(abi uint16, localSymVersion int) int {
	var v int
	if abi == goobj2.SymABIstatic {
		// Static
		v = localSymVersion
	} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
		// Note that data symbols are "ABI0", which maps to version 0.
		v = abiver
	} else {
		log.Fatalf("invalid symbol ABI: %d", abi)
	}
	return v
}

func preprocess(arch *sys.Arch, s *sym.Symbol) {
	if s.Name != "" && s.Name[0] == '$' && len(s.Name) > 5 && s.Type == 0 && len(s.P) == 0 {
		x, err := strconv.ParseUint(s.Name[5:], 16, 64)
		if err != nil {
			log.Panicf("failed to parse $-symbol %s: %v", s.Name, err)
		}
		s.Type = sym.SRODATA
		s.Attr |= sym.AttrLocal
		switch s.Name[:5] {
		case "$f32.":
			if uint64(uint32(x)) != x {
				log.Panicf("$-symbol %s too large: %d", s.Name, x)
			}
			s.AddUint32(arch, uint32(x))
		case "$f64.", "$i64.":
			s.AddUint64(arch, x)
		default:
			log.Panicf("unrecognized $-symbol: %s", s.Name)
		}
	}
}

func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols) {

	nr := 0 // total number of sym.Reloc's we'll need
		nr += loadObjSyms(l, syms, o.r)
	// Make a first pass through the external symbols, making
	// sure that each external symbol has a non-nil entry in
	// l.Syms (note that relocations and symbol content will
	// be copied in a later loop).
	toConvert := make([]Sym, 0, len(l.payloads))
	for _, i := range l.extReader.syms {
		sname := l.RawSymName(i)
		if !l.attrReachable.has(i) && !strings.HasPrefix(sname, "gofile..") { // XXX file symbols are used but not marked
			continue
		}
		pp := l.getPayload(i)
		nr += len(pp.relocs)
		// create and install the sym.Symbol here so that l.Syms will
		// be fully populated when we do relocation processing and
		// outer/sub processing below. Note that once we do this,
		// we'll need to get at the payload for a symbol with direct
		// reference to l.payloads[] as opposed to calling l.getPayload().
		s := l.allocSym(sname, 0)
		l.installSym(i, s)
		toConvert = append(toConvert, i)
	}

	// allocate a single large slab of relocations for all live symbols
	l.relocBatch = make([]sym.Reloc, nr)

	// convert payload-based external symbols into sym.Symbol-based
	for _, i := range toConvert {

		// Copy kind/size/value etc.
		pp := l.payloads[l.extIndex(i)]
		s := l.Syms[i]
		s.Version = int16(pp.ver)
		s.Type = pp.kind
		s.Size = pp.size
		s.Value = l.SymValue(i)
		if pp.gotype != 0 {
			s.Gotype = l.Syms[pp.gotype]
		}
		s.Value = l.values[i]
		if f, ok := l.symFile[i]; ok {
			s.File = f
		} else if pp.objidx != 0 {
			s.File = l.objs[pp.objidx].r.unit.Lib.File
		}

		// Copy relocations
		batch := l.relocBatch
		s.R = batch[:len(pp.relocs):len(pp.relocs)]
		l.relocBatch = batch[len(pp.relocs):]
		l.convertRelocations(pp.relocs, s)

		// Copy data
		s.P = pp.data

		// Transfer over attributes.
		l.migrateAttributes(i, s)
		// Preprocess symbol. May set 'AttrLocal'.
	// Note: resolution of ABI aliases is now also handled in
	// loader.convertRelocations, so once the host object loaders move
	// completely to loader.Sym, we can remove the code below.

	// Resolve ABI aliases for external symbols. This is only
	// needed for internal cgo linking.
	// (The old code does this in deadcode, but deadcode2 doesn't
	// do this.)
	for _, i := range l.extReader.syms {
		if s := l.Syms[i]; s != nil && s.Attr.Reachable() {
			for ri := range s.R {
				r := &s.R[ri]
				if r.Sym != nil && r.Sym.Type == sym.SABIALIAS {
					r.Sym = r.Sym.R[0].Sym
				}
			}
		}
	}
// ExtractSymbols grabs the symbols out of the loader for work that hasn't been
// ported to the new symbol type.
func (l *Loader) ExtractSymbols(syms *sym.Symbols) {
	// Add symbols to the ctxt.Syms lookup table. This explicitly skips things
	// created via loader.Create (marked with versions less than zero), since
	// if we tried to add these we'd wind up with collisions. We do, however,
	// add these symbols to the list of global symbols so that other future
	// steps (like pclntab generation) can find these symbols if neceassary.
	// Along the way, update the version from the negative anon version to
	// something larger than sym.SymVerStatic (needed so that
	// sym.symbol.IsFileLocal() works properly).
	anonVerReplacement := syms.IncVersion()
	for _, s := range l.Syms {
		if s == nil {
			continue
		}
		if s.Name != "" && s.Version >= 0 {
		} else {
			syms.Allsym = append(syms.Allsym, s)
		if s.Version < 0 {
			s.Version = int16(anonVerReplacement)
		}
// allocSym allocates a new symbol backing.
func (l *Loader) allocSym(name string, version int) *sym.Symbol {
	batch := l.symBatch
	if len(batch) == 0 {
		batch = make([]sym.Symbol, 1000)
	}
	s := &batch[0]
	l.symBatch = batch[1:]

	s.Dynid = -1
	s.Name = name
	s.Version = int16(version)

	return s
}

// installSym sets the underlying sym.Symbol for the specified sym index.
func (l *Loader) installSym(i Sym, s *sym.Symbol) {
	if s == nil {
		panic("installSym nil symbol")
	}
	if l.Syms[i] != nil {
		panic("sym already present in installSym")
// addNewSym adds a new sym.Symbol to the i-th index in the list of symbols.
func (l *Loader) addNewSym(i Sym, name string, ver int, unit *sym.CompilationUnit, t sym.SymKind) *sym.Symbol {
	s := l.allocSym(name, ver)
	if s.Type != 0 && s.Type != sym.SXREF {
		fmt.Println("symbol already processed:", unit.Lib, i, s)
		panic("symbol already processed")
	}
	if t == sym.SBSS && (s.Type == sym.SRODATA || s.Type == sym.SNOPTRBSS) {
		t = s.Type
	}
	s.Type = t
	s.Unit = unit
// loadObjSyms creates sym.Symbol objects for the live Syms in the
// object corresponding to object reader "r". Return value is the
// number of sym.Reloc entries required for all the new symbols.
func loadObjSyms(l *Loader, syms *sym.Symbols, r *oReader) int {
	nr := 0
	for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ {
		gi := r.syms[i]
		if r2, i2 := l.toLocal(gi); r2 != r || i2 != i{
			continue // come from a different object
		}
		osym := goobj2.Sym{}
		name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
		if name == "" {
			continue
		ver := abiToVer(osym.ABI, r.version)
		if osym.ABI != goobj2.SymABIstatic && l.symsByName[ver][name] != gi {
		t := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]
		if t == sym.SXREF {
			log.Fatalf("bad sxref")
		}
		if t == 0 {
			log.Fatalf("missing type for %s in %s", name, r.unit.Lib)
		if !l.attrReachable.has(gi) && !(t == sym.SRODATA && strings.HasPrefix(name, "type.")) && name != "runtime.addmoduledata" && name != "runtime.lastmoduledatap" {
			// No need to load unreachable symbols.
			// XXX some type symbol's content may be needed in DWARF code, but they are not marked.
			// XXX reference to runtime.addmoduledata may be generated later by the linker in plugin mode.
		s := l.addNewSym(gi, name, ver, r.unit, t)
		l.migrateAttributes(gi, s)
	return nr
}

// funcInfoSym records the sym.Symbol for a function, along with a copy
// of the corresponding goobj2.Sym and the index of its FuncInfo aux sym.
// We use this to delay populating FuncInfo until we can batch-allocate
// slices for their sub-objects.
type funcInfoSym struct {
	s    *sym.Symbol // sym.Symbol for a live function
	osym goobj2.Sym  // object file symbol data for that function
	isym int         // global symbol index of FuncInfo aux sym for func
}

// funcAllocInfo records totals/counts for all functions in an objfile;
// used to help with bulk allocation of sym.Symbol sub-objects.
type funcAllocInfo struct {
	symPtr  uint32 // number of *sym.Symbol's needed in file slices
	inlCall uint32 // number of sym.InlinedCall's needed in inltree slices
	pcData  uint32 // number of sym.Pcdata's needed in pdata slices
	fdOff   uint32 // number of int64's needed in all Funcdataoff slices
// LookupOrCreate looks up a symbol by name, and creates one if not found.
// Either way, it will also create a sym.Symbol for it, if not already.
// This should only be called when interacting with parts of the linker
// that still works on sym.Symbols (i.e. internal cgo linking, for now).
func (l *Loader) LookupOrCreate(name string, version int) *sym.Symbol {
	panic("unreachable") // TODO: delete once PE loader is converted
// cloneToExternal takes the existing object file symbol (symIdx)
// and creates a new external symbol payload that is a clone with
// respect to name, version, type, relocations, etc. The idea here
// is that if the linker decides it wants to update the contents of
// a symbol originally discovered as part of an object file, it's
// easier to do this if we make the updates to an external symbol
// payload.
// XXX maybe rename? makeExtPayload?
func (l *Loader) cloneToExternal(symIdx Sym) {
	if l.IsExternal(symIdx) {
		panic("sym is already external, no need for clone")
	}
	l.growSyms(int(symIdx))

	// Read the particulars from object.
	osym := goobj2.Sym{}
	r, li := l.toLocal(symIdx)
	osym.Read(r.Reader, r.SymOff(li))
	sname := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
	sver := abiToVer(osym.ABI, r.version)
	skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type)]

	// Create new symbol, update version and kind.
	pi := l.newPayload(sname, sver)
	pp := l.payloads[pi]
	pp.kind = skind
	pp.ver = sver
	pp.size = int64(osym.Siz)

	// If this is a def, then copy the guts. We expect this case
	// to be very rare (one case it may come up is with -X).
	if li < (r.NSym() + r.NNonpkgdef()) {

		// Copy relocations
		relocs := l.Relocs(symIdx)
		pp.relocs = relocs.ReadAll(nil)

		// Copy data
		pp.data = r.Data(li)
	}

	// If we're overriding a data symbol, collect the associated
	// Gotype, so as to propagate it to the new symbol.
	naux := r.NAux(li)
	for j := 0; j < naux; j++ {
		a := goobj2.Aux{}
		a.Read(r.Reader, r.AuxOff(li, j))
		switch a.Type {
		case goobj2.AuxGotype:
			pp.gotype = l.resolve(r, a.Sym)
		default:
			log.Fatalf("internal error: cloneToExternal applied to %s symbol %s with non-gotype aux data %d", skind.String(), sname, a.Type)
		}
	}

	// Install new payload to global index space.
	// (This needs to happen at the end, as the accessors above
	// need to access the old symbol content.)
	l.objSyms[symIdx] = objSym{l.extReader, pi}
	l.extReader.syms = append(l.extReader.syms, symIdx)
// copyAttributes copies over all of the attributes of symbol 'src' to
// symbol 'dst'. The assumption is that 'dst' is an external symbol.
func (l *Loader) copyAttributes(src Sym, dst Sym) {
	l.SetAttrReachable(dst, l.AttrReachable(src))
	l.SetAttrOnList(dst, l.AttrOnList(src))
	l.SetAttrLocal(dst, l.AttrLocal(src))
	l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src))
	l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src))
	l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src))
	l.SetAttrShared(dst, l.AttrShared(src))
	l.SetAttrExternal(dst, l.AttrExternal(src))
	l.SetAttrTopFrame(dst, l.AttrTopFrame(src))
	l.SetAttrSpecial(dst, l.AttrSpecial(src))
	l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src))
	l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src))
	l.SetAttrReadOnly(dst, l.AttrReadOnly(src))
}

// migrateAttributes copies over all of the attributes of symbol 'src' to
// sym.Symbol 'dst'.
func (l *Loader) migrateAttributes(src Sym, dst *sym.Symbol) {
	dst.Attr.Set(sym.AttrReachable, l.AttrReachable(src))
	dst.Attr.Set(sym.AttrOnList, l.AttrOnList(src))
	dst.Attr.Set(sym.AttrLocal, l.AttrLocal(src))
	dst.Attr.Set(sym.AttrNotInSymbolTable, l.AttrNotInSymbolTable(src))
	dst.Attr.Set(sym.AttrVisibilityHidden, l.AttrVisibilityHidden(src))
	dst.Attr.Set(sym.AttrDuplicateOK, l.AttrDuplicateOK(src))
	dst.Attr.Set(sym.AttrShared, l.AttrShared(src))
	dst.Attr.Set(sym.AttrExternal, l.AttrExternal(src))
	dst.Attr.Set(sym.AttrTopFrame, l.AttrTopFrame(src))
	dst.Attr.Set(sym.AttrSpecial, l.AttrSpecial(src))
	dst.Attr.Set(sym.AttrCgoExportDynamic, l.AttrCgoExportDynamic(src))
	dst.Attr.Set(sym.AttrCgoExportStatic, l.AttrCgoExportStatic(src))
	dst.Attr.Set(sym.AttrReadOnly, l.AttrReadOnly(src))

	// Convert outer/sub relationships
	if outer, ok := l.outer[src]; ok {
		dst.Outer = l.Syms[outer]
	}
	if sub, ok := l.sub[src]; ok {
		dst.Sub = l.Syms[sub]
	}

	// Set sub-symbol attribute. FIXME: would be better to do away
	// with this and just use l.OuterSymbol() != 0 elsewhere within
	// the linker.
	dst.Attr.Set(sym.AttrSubSymbol, dst.Outer != nil)

	// Copy over dynimplib, dynimpvers, extname.
	if l.SymExtname(src) != "" {
		dst.SetExtname(l.SymExtname(src))
	}
	if l.SymDynimplib(src) != "" {
		dst.SetDynimplib(l.SymDynimplib(src))
	}
	if l.SymDynimpvers(src) != "" {
		dst.SetDynimpvers(l.SymDynimpvers(src))
	}

	// Copy ELF type if set.
	if et, ok := l.elfType[src]; ok {
		dst.SetElfType(et)
	}

	// Copy pe objects values if set.
	if plt, ok := l.plt[src]; ok {
		dst.SetPlt(plt)
	}
	if got, ok := l.got[src]; ok {
		dst.SetGot(got)
	}
// CreateExtSym creates a new external symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateExtSym(name string) Sym {
	// Assign a new unique negative version -- this is to mark the
	// symbol so that it can be skipped when ExtractSymbols is adding
	// ext syms to the sym.Symbols hash.
	l.anonVersion--
	return l.newExtSym(name, l.anonVersion)
func loadObjFull(l *Loader, r *oReader) {
	resolveSymRef := func(s goobj2.SymRef) *sym.Symbol {
	funcs := []funcInfoSym{}
	fdsyms := []*sym.Symbol{}
	var funcAllocCounts funcAllocInfo
	for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ {
		// A symbol may be a dup or overwritten. In this case, its
		// content will actually be provided by a different object
		// (to which its global index points). Skip those symbols.
		gi := l.toGlobal(r, i)
		var isdup bool
		if r2, i2 := l.toLocal(gi); r2 != r || i2 != i {
			isdup = true
		}

		osym := goobj2.Sym{}
		osym.Read(r.Reader, r.SymOff(i))
		name := strings.Replace(osym.Name, "\"\".", r.pkgprefix, -1)
		if dupok && isdup {
			if l.attrReachable.has(gi) {
				// A dupok symbol is resolved to another package. We still need
				// to record its presence in the current package, as the trampoline
				// pass expects packages are laid out in dependency order.
				s := l.Syms[gi]
				if s.Type == sym.STEXT {
					lib.DupTextSyms = append(lib.DupTextSyms, s)
					lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(gi))
			continue // come from a different object
		}
		s := l.Syms[gi]
		if s.Name != name { // Sanity check. We can remove it in the final version.
			fmt.Println("name mismatch:", lib, i, s.Name, name)
			panic("name mismatch")
		}

		local := osym.Local()
		makeTypelink := osym.Typelink()
		size := osym.Siz

		// Symbol data
		s.P = r.Data(i)
		s.Attr.Set(sym.AttrReadOnly, r.ReadOnly())
		batch := l.relocBatch
		s.R = batch[:relocs.Count:relocs.Count]
		l.relocBatch = batch[relocs.Count:]
		l.convertRelocations(rslice, s)
		naux := r.NAux(i)
		for j := 0; j < naux; j++ {
			a := goobj2.Aux{}
			switch a.Type {
			case goobj2.AuxGotype:
				typ := resolveSymRef(a.Sym)
				if typ != nil {
					s.Gotype = typ
				}
				fdsyms = append(fdsyms, resolveSymRef(a.Sym))
			case goobj2.AuxFuncInfo:
				if a.Sym.PkgIdx != goobj2.PkgIdxSelf {
					panic("funcinfo symbol not defined in current package")
				}
				isym = int(a.Sym.SymIdx)
			case goobj2.AuxDwarfInfo, goobj2.AuxDwarfLoc, goobj2.AuxDwarfRanges, goobj2.AuxDwarfLines:
				// ignored for now
		s.File = r.pkgprefix[:len(r.pkgprefix)-1]
		if dupok {
			s.Attr |= sym.AttrDuplicateOK
		}
		if s.Size < int64(size) {
			s.Size = int64(size)
		}
		s.Attr.Set(sym.AttrLocal, local)
		s.Attr.Set(sym.AttrMakeTypelink, makeTypelink)

		if s.Type == sym.SDWARFINFO {
			// For DWARF symbols, replace `"".` to actual package prefix
			// in the symbol content.
			// TODO: maybe we should do this in the compiler and get rid
			// of this.
			patchDWARFName(s, r)
		}

		if s.Type != sym.STEXT {
			continue
		}

		if isym == -1 {
			continue
		}

		// Record function sym and associated info for additional
		// processing in the loop below.
		fwis := funcInfoSym{s: s, isym: isym, osym: osym}
		funcs = append(funcs, fwis)

		// Read the goobj2.FuncInfo for this text symbol so that we can
		// collect allocation counts. We'll read it again in the loop
		// below.
		b := r.Data(isym)
		info := goobj2.FuncInfo{}
		info.Read(b)
		funcAllocCounts.symPtr += uint32(len(info.File))
		funcAllocCounts.pcData += uint32(len(info.Pcdata))
		funcAllocCounts.inlCall += uint32(len(info.InlTree))
		funcAllocCounts.fdOff += uint32(len(info.Funcdataoff))
	}

	// At this point we can do batch allocation of the sym.FuncInfo's,
	// along with the slices of sub-objects they use.
	fiBatch := make([]sym.FuncInfo, len(funcs))
	inlCallBatch := make([]sym.InlinedCall, funcAllocCounts.inlCall)
	symPtrBatch := make([]*sym.Symbol, funcAllocCounts.symPtr)
	pcDataBatch := make([]sym.Pcdata, funcAllocCounts.pcData)
	fdOffBatch := make([]int64, funcAllocCounts.fdOff)

	// Populate FuncInfo contents for func symbols.
	for fi := 0; fi < len(funcs); fi++ {
		s := funcs[fi].s
		isym := funcs[fi].isym
		osym := funcs[fi].osym

		s.FuncInfo = &fiBatch[0]
		fiBatch = fiBatch[1:]

		info := goobj2.FuncInfo{}
		info.Read(b)

		if info.NoSplit != 0 {
			s.Attr |= sym.AttrNoSplit
		}
			s.Attr |= sym.AttrReflectMethod
		}
		if r.Flags()&goobj2.ObjFlagShared != 0 {
			s.Attr |= sym.AttrShared
		}

		if len(info.Funcdataoff) != 0 {
			nfd := len(info.Funcdataoff)
			pc.Funcdata = fdsyms[:nfd:nfd]
			fdsyms = fdsyms[nfd:]

		info.Pcdata = append(info.Pcdata, info.PcdataEnd) // for the ease of knowing where it ends
		pc.Args = int32(info.Args)
		pc.Locals = int32(info.Locals)

		npc := len(info.Pcdata) - 1 // -1 as we appended one above
		pc.Pcdata = pcDataBatch[:npc:npc]
		pcDataBatch = pcDataBatch[npc:]

		nfd := len(info.Funcdataoff)
		pc.Funcdataoff = fdOffBatch[:nfd:nfd]
		fdOffBatch = fdOffBatch[nfd:]

		nsp := len(info.File)
		pc.File = symPtrBatch[:nsp:nsp]
		symPtrBatch = symPtrBatch[nsp:]

		nic := len(info.InlTree)
		pc.InlTree = inlCallBatch[:nic:nic]
		inlCallBatch = inlCallBatch[nic:]

		pc.Pcsp.P = r.BytesAt(pcdataBase+info.Pcsp, int(info.Pcfile-info.Pcsp))
		pc.Pcfile.P = r.BytesAt(pcdataBase+info.Pcfile, int(info.Pcline-info.Pcfile))
		pc.Pcline.P = r.BytesAt(pcdataBase+info.Pcline, int(info.Pcinline-info.Pcline))
		pc.Pcinline.P = r.BytesAt(pcdataBase+info.Pcinline, int(info.Pcdata[0]-info.Pcinline))
		for k := range pc.Pcdata {
			pc.Pcdata[k].P = r.BytesAt(pcdataBase+info.Pcdata[k], int(info.Pcdata[k+1]-info.Pcdata[k]))
		}
		for k := range pc.Funcdataoff {
			pc.Funcdataoff[k] = int64(info.Funcdataoff[k])
		}
		for k := range pc.File {
			pc.File[k] = resolveSymRef(info.File[k])
		}
		for k := range pc.InlTree {
			inl := &info.InlTree[k]
			pc.InlTree[k] = sym.InlinedCall{
				Parent:   inl.Parent,
				File:     resolveSymRef(inl.File),
				Line:     inl.Line,
				Func:     l.SymName(l.resolve(r, inl.Func)),
		if !dupok {
			if s.Attr.OnList() {
				log.Fatalf("symbol %s listed multiple times", s.Name)
			}
			s.Attr.Set(sym.AttrOnList, true)
			lib.Textp = append(lib.Textp, s)
			lib.Textp2 = append(lib.Textp2, sym.LoaderSym(isym))
			// there may be a dup in another package
			// put into a temp list and add to text later
			lib.DupTextSyms = append(lib.DupTextSyms, s)
			lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(isym))
// convertRelocations takes a vector of loader.Reloc relocations and
// translates them into an equivalent set of sym.Reloc relocations on
// the symbol "dst", performing fixups along the way for ABI aliases,
// etc. It is assumed that the called has pre-allocated the dst symbol
// relocations slice.
func (l *Loader) convertRelocations(src []Reloc, dst *sym.Symbol) {
	for j := range dst.R {
Loading
Loading full blame...