Newer
Older
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"fmt"
"internal/pkgbits"
"io"
"runtime"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/inline"
"cmd/compile/internal/ir"
"cmd/compile/internal/pgo"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/compile/internal/types2"
"cmd/internal/src"
)
// localPkgReader holds the package reader used for reading the local
// package. It exists so the unified IR linker can refer back to it
// later.
var localPkgReader *pkgReader
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// LookupMethodFunc returns the ir.Func for an arbitrary full symbol name if
// that function exists in the set of available export data.
//
// This allows lookup of arbitrary methods that aren't otherwise referenced by
// the local package and thus haven't been read yet.
//
// TODO(prattmic): Does not handle instantiation of generic types. Currently
// profiles don't contain the original type arguments, so we won't be able to
// create the runtime dictionaries.
//
// TODO(prattmic): Hit rate of this function is usually fairly low, and errors
// are only used when debug logging is enabled. Consider constructing cheaper
// errors by default.
func LookupMethodFunc(fullName string) (*ir.Func, error) {
pkgPath, symName, err := ir.ParseLinkFuncName(fullName)
if err != nil {
return nil, fmt.Errorf("error parsing symbol name %q: %v", fullName, err)
}
pkg, ok := types.PkgMap()[pkgPath]
if !ok {
return nil, fmt.Errorf("pkg %s doesn't exist in %v", pkgPath, types.PkgMap())
}
// N.B. readPackage creates a Sym for every object in the package to
// initialize objReader and importBodyReader, even if the object isn't
// read.
//
// However, objReader is only initialized for top-level objects, so we
// must first lookup the type and use that to find the method rather
// than looking for the method directly.
typ, meth, err := ir.LookupMethodSelector(pkg, symName)
if err != nil {
return nil, fmt.Errorf("error looking up method symbol %q: %v", symName, err)
}
pri, ok := objReader[typ]
if !ok {
return nil, fmt.Errorf("type sym %v missing objReader", typ)
}
name := pri.pr.objIdx(pri.idx, nil, nil, false).(*ir.Name)
if name.Op() != ir.OTYPE {
return nil, fmt.Errorf("type sym %v refers to non-type name: %v", typ, name)
}
if name.Alias() {
return nil, fmt.Errorf("type sym %v refers to alias", typ)
}
for _, m := range name.Type().Methods() {
if m.Sym == meth {
fn := m.Nname.(*ir.Name).Func
return fn, nil
}
}
return nil, fmt.Errorf("method %s missing from method set of %v", symName, typ)
}
// unified constructs the local package's Internal Representation (IR)
// from its syntax tree (AST).
//
// The pipeline contains 2 steps:
//
// 1. Generate the export data "stub".
//
// 2. Generate the IR from the export data above.
//
// The package data "stub" at step (1) contains everything from the local package,
// but nothing that has been imported. When we're actually writing out export data
// to the output files (see writeNewExport), we run the "linker", which:
//
// - Updates compiler extensions data (e.g. inlining cost, escape analysis results).
//
//
// - Prunes out any unnecessary details (e.g. non-inlineable functions, because any
// downstream importers only care about inlinable functions).
//
// The source files are typechecked twice: once before writing the export data
// using types2, and again after reading the export data using gc/typecheck.
// The duplication of work will go away once we only use the types2 type checker,
// removing the gc/typecheck step. For now, it is kept because:
//
// - It reduces the engineering costs in maintaining a fork of typecheck
// (e.g. no need to backport fixes like CL 327651).
//
//
// - Historically, we would always re-run the typechecker after importing a package,
// even though we know the imported data is valid. It's not ideal, but it's
// not causing any problems either.
//
// - gc/typecheck is still in charge of some transformations, such as rewriting
// multi-valued function calls or transforming ir.OINDEX to ir.OINDEXMAP.
//
// Using the syntax tree with types2, which has a complete representation of generics,
// the unified IR has the full typed AST needed for introspection during step (1).
// In other words, we have all the necessary information to build the generic IR form
// (see writer.captureVars for an example).
func unified(m posMap, noders []*noder) {
inline.InlineCall = unifiedInlineCall
typecheck.HaveInlineBody = unifiedHaveInlineBody
pgo.LookupMethodFunc = LookupMethodFunc
data := writePkgStub(m, noders)
target := typecheck.Target
localPkgReader = newPkgReader(pkgbits.NewPkgDecoder(types.LocalPkg.Path, data))
readPackage(localPkgReader, types.LocalPkg, true)
r := localPkgReader.newReader(pkgbits.RelocMeta, pkgbits.PrivateRootIdx, pkgbits.SyncPrivate)
r.pkgInit(types.LocalPkg, target)
readBodies(target, false)
// Check that nothing snuck past typechecking.
for _, fn := range target.Funcs {
if fn.Typecheck() == 0 {
base.FatalfAt(fn.Pos(), "missed typecheck: %v", fn)
}
// For functions, check that at least their first statement (if
// any) was typechecked too.
if stmt := fn.Body[0]; stmt.Typecheck() == 0 {
base.FatalfAt(stmt.Pos(), "missed typecheck: %v", stmt)
}
}
}
// For functions originally came from package runtime,
// mark as norace to prevent instrumenting, see issue #60439.
if !base.Flag.CompilingRuntime && types.RuntimeSymName(fn.Sym()) != "" {
}
}
base.ExitIfErrors() // just in case
}
// readBodies iteratively expands all pending dictionaries and
// function bodies.
//
// If duringInlining is true, then the inline.InlineDecls is called as
// necessary on instantiations of imported generic functions, so their
// inlining costs can be computed.
func readBodies(target *ir.Package, duringInlining bool) {
// Don't use range--bodyIdx can add closures to todoBodies.
for {
// The order we expand dictionaries and bodies doesn't matter, so
// pop from the end to reduce todoBodies reallocations if it grows
// further.
//
// However, we do at least need to flush any pending dictionaries
// before reading bodies, because bodies might reference the
// dictionaries.
if len(todoDicts) > 0 {
fn := todoDicts[len(todoDicts)-1]
todoDicts = todoDicts[:len(todoDicts)-1]
fn()
continue
if len(todoBodies) > 0 {
fn := todoBodies[len(todoBodies)-1]
todoBodies = todoBodies[:len(todoBodies)-1]
pri, ok := bodyReader[fn]
assert(ok)
pri.funcBody(fn)
// Instantiated generic function: add to Decls for typechecking
// and compilation.
if fn.OClosure == nil && len(pri.dict.targs) != 0 {
// cmd/link does not support a type symbol referencing a method symbol
// across DSO boundary, so force re-compiling methods on a generic type
// even it was seen from imported package in linkshared mode, see #58966.
canSkipNonGenericMethod := !(base.Ctxt.Flag_linkshared && ir.IsMethod(fn))
if duringInlining && canSkipNonGenericMethod {
inlDecls = append(inlDecls, fn)
} else {
target.Funcs = append(target.Funcs, fn)
}
continue
}
break
todoDicts = nil
todoBodies = nil
if len(inlDecls) != 0 {
// If we instantiated any generic functions during inlining, we need
// to call CanInline on them so they'll be transitively inlined
// correctly (#56280).
//
// We know these functions were already compiled in an imported
// package though, so we don't need to actually apply InlineCalls or
// save the function bodies any further than this.
//
// We can also lower the -m flag to 0, to suppress duplicate "can
// inline" diagnostics reported against the imported package. Again,
// we already reported those diagnostics in the original package, so
// it's pointless repeating them here.
oldLowerM := base.Flag.LowerM
base.Flag.LowerM = 0
inline.InlineDecls(nil, inlDecls, false)
base.Flag.LowerM = oldLowerM
for _, fn := range inlDecls {
// writePkgStub type checks the given parsed source files,
// writes an export data package stub representing them,
// and returns the result.
func writePkgStub(m posMap, noders []*noder) string {
pkg, info := checkFiles(m, noders)
pw := newPkgWriter(m, pkg, info)
pw.collectDecls(noders)
publicRootWriter := pw.newWriter(pkgbits.RelocMeta, pkgbits.SyncPublic)
privateRootWriter := pw.newWriter(pkgbits.RelocMeta, pkgbits.SyncPrivate)
assert(publicRootWriter.Idx == pkgbits.PublicRootIdx)
assert(privateRootWriter.Idx == pkgbits.PrivateRootIdx)
{
w := publicRootWriter
w.pkg(pkg)
w.Bool(false) // TODO(mdempsky): Remove; was "has init"
scope := pkg.Scope()
names := scope.Names()
w.Len(len(names))
for _, name := range names {
w.obj(scope.Lookup(name), nil)
}
w.Sync(pkgbits.SyncEOF)
w.Flush()
}
{
w := privateRootWriter
w.pkgInit(noders)
pw.DumpTo(&sb)
// At this point, we're done with types2. Make sure the package is
// garbage collected.
freePackage(pkg)
return sb.String()
}
// freePackage ensures the given package is garbage collected.
func freePackage(pkg *types2.Package) {
// The GC test below relies on a precise GC that runs finalizers as
// soon as objects are unreachable. Our implementation provides
// this, but other/older implementations may not (e.g., Go 1.4 does
// not because of #22350). To avoid imposing unnecessary
// restrictions on the GOROOT_BOOTSTRAP toolchain, we skip the test
// during bootstrapping.
if base.CompilerBootstrap || base.Debug.GCCheck == 0 {
*pkg = types2.Package{}
return
}
// Set a finalizer on pkg so we can detect if/when it's collected.
done := make(chan struct{})
runtime.SetFinalizer(pkg, func(*types2.Package) { close(done) })
// Important: objects involved in cycles are not finalized, so zero
// out pkg to break its cycles and allow the finalizer to run.
*pkg = types2.Package{}
// It typically takes just 1 or 2 cycles to release pkg, but it
// doesn't hurt to try a few more times.
for i := 0; i < 10; i++ {
select {
case <-done:
return
default:
runtime.GC()
}
}
base.Fatalf("package never finalized")
}
// readPackage reads package export data from pr to populate
// importpkg.
//
// localStub indicates whether pr is reading the stub export data for
// the local package, as opposed to relocated export data for an
// import.
func readPackage(pr *pkgReader, importpkg *types.Pkg, localStub bool) {
{
r := pr.newReader(pkgbits.RelocMeta, pkgbits.PublicRootIdx, pkgbits.SyncPublic)
pkg := r.pkg()
base.Assertf(pkg == importpkg, "have package %q (%p), want package %q (%p)", pkg.Path, pkg, importpkg.Path, importpkg)
r.Bool() // TODO(mdempsky): Remove; was "has init"
for i, n := 0, r.Len(); i < n; i++ {
r.Sync(pkgbits.SyncObject)
assert(!r.Bool())
idx := r.Reloc(pkgbits.RelocObj)
assert(r.Len() == 0)
path, name, code := r.p.PeekObj(idx)
if code != pkgbits.ObjStub {
objReader[types.NewPkg(path, "").Lookup(name)] = pkgReaderIndex{pr, idx, nil, nil, nil}
}
}
r.Sync(pkgbits.SyncEOF)
if !localStub {
r := pr.newReader(pkgbits.RelocMeta, pkgbits.PrivateRootIdx, pkgbits.SyncPrivate)
if r.Bool() {
sym := importpkg.Lookup(".inittask")
task := ir.NewNameAt(src.NoXPos, sym, nil)
task.Class = ir.PEXTERN
sym.Def = task
}
for i, n := 0, r.Len(); i < n; i++ {
path := r.String()
name := r.String()
idx := r.Reloc(pkgbits.RelocBody)
sym := types.NewPkg(path, "").Lookup(name)
if _, ok := importBodyReader[sym]; !ok {
importBodyReader[sym] = pkgReaderIndex{pr, idx, nil, nil, nil}
}
r.Sync(pkgbits.SyncEOF)
// writeUnifiedExport writes to `out` the finalized, self-contained
// Unified IR export data file for the current compilation unit.
func writeUnifiedExport(out io.Writer) {
pw: pkgbits.NewPkgEncoder(base.Debug.SyncFrames),
pkgs: make(map[string]pkgbits.Index),
decls: make(map[*types.Sym]pkgbits.Index),
bodies: make(map[*types.Sym]pkgbits.Index),
publicRootWriter := l.pw.NewEncoder(pkgbits.RelocMeta, pkgbits.SyncPublic)
privateRootWriter := l.pw.NewEncoder(pkgbits.RelocMeta, pkgbits.SyncPrivate)
assert(publicRootWriter.Idx == pkgbits.PublicRootIdx)
assert(privateRootWriter.Idx == pkgbits.PrivateRootIdx)
{
pr := localPkgReader
r := pr.NewDecoder(pkgbits.RelocMeta, pkgbits.PublicRootIdx, pkgbits.SyncPublic)
r.Sync(pkgbits.SyncPkg)
selfPkgIdx = l.relocIdx(pr, pkgbits.RelocPkg, r.Reloc(pkgbits.RelocPkg))
r.Bool() // TODO(mdempsky): Remove; was "has init"
for i, n := 0, r.Len(); i < n; i++ {
r.Sync(pkgbits.SyncObject)
assert(!r.Bool())
idx := r.Reloc(pkgbits.RelocObj)
assert(r.Len() == 0)
xpath, xname, xtag := pr.PeekObj(idx)
assert(xpath == pr.PkgPath())
assert(xtag != pkgbits.ObjStub)
if types.IsExported(xname) {
l.relocIdx(pr, pkgbits.RelocObj, idx)
r.Sync(pkgbits.SyncEOF)
for _, idx := range l.decls {
idxs = append(idxs, idx)
}
sort.Slice(idxs, func(i, j int) bool { return idxs[i] < idxs[j] })
w := publicRootWriter
w.Sync(pkgbits.SyncPkg)
w.Reloc(pkgbits.RelocPkg, selfPkgIdx)
w.Bool(false) // TODO(mdempsky): Remove; was "has init"
w.Len(len(idxs))
for _, idx := range idxs {
w.Sync(pkgbits.SyncObject)
w.Bool(false)
w.Reloc(pkgbits.RelocObj, idx)
w.Len(0)
w.Sync(pkgbits.SyncEOF)
w.Flush()
{
type symIdx struct {
sym *types.Sym
idx pkgbits.Index
}
var bodies []symIdx
for sym, idx := range l.bodies {
bodies = append(bodies, symIdx{sym, idx})
}
sort.Slice(bodies, func(i, j int) bool { return bodies[i].idx < bodies[j].idx })
w := privateRootWriter
w.Bool(typecheck.Lookup(".inittask").Def != nil)
w.Len(len(bodies))
for _, body := range bodies {
w.String(body.sym.Pkg.Path)
w.String(body.sym.Name)
w.Reloc(pkgbits.RelocBody, body.idx)
}
w.Sync(pkgbits.SyncEOF)
w.Flush()
}
base.Ctxt.Fingerprint = l.pw.DumpTo(out)