Skip to content
Snippets Groups Projects
malloc.go 26.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2014 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    
    // Memory allocator, based on tcmalloc.
    // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
    
    // The main allocator works in runs of pages.
    // Small allocation sizes (up to and including 32 kB) are
    // rounded to one of about 100 size classes, each of which
    // has its own free list of objects of exactly that size.
    // Any free page of memory can be split into a set of objects
    // of one size class, which are then managed using free list
    // allocators.
    //
    // The allocator's data structures are:
    //
    //	FixAlloc: a free-list allocator for fixed-size objects,
    //		used to manage storage used by the allocator.
    //	MHeap: the malloc heap, managed at page (4096-byte) granularity.
    //	MSpan: a run of pages managed by the MHeap.
    //	MCentral: a shared free list for a given size class.
    //	MCache: a per-thread (in Go, per-P) cache for small objects.
    //	MStats: allocation statistics.
    //
    // Allocating a small object proceeds up a hierarchy of caches:
    //
    //	1. Round the size up to one of the small size classes
    //	   and look in the corresponding MCache free list.
    //	   If the list is not empty, allocate an object from it.
    //	   This can all be done without acquiring a lock.
    //
    //	2. If the MCache free list is empty, replenish it by
    //	   taking a bunch of objects from the MCentral free list.
    //	   Moving a bunch amortizes the cost of acquiring the MCentral lock.
    //
    //	3. If the MCentral free list is empty, replenish it by
    //	   allocating a run of pages from the MHeap and then
    //	   chopping that memory into objects of the given size.
    //	   Allocating many objects amortizes the cost of locking
    //	   the heap.
    //
    //	4. If the MHeap is empty or has no page runs large enough,
    //	   allocate a new group of pages (at least 1MB) from the
    //	   operating system.  Allocating a large run of pages
    //	   amortizes the cost of talking to the operating system.
    //
    // Freeing a small object proceeds up the same hierarchy:
    //
    //	1. Look up the size class for the object and add it to
    //	   the MCache free list.
    //
    //	2. If the MCache free list is too long or the MCache has
    //	   too much memory, return some to the MCentral free lists.
    //
    //	3. If all the objects in a given span have returned to
    //	   the MCentral list, return that span to the page heap.
    //
    //	4. If the heap has too much memory, return some to the
    //	   operating system.
    //
    //	TODO(rsc): Step 4 is not implemented.
    //
    // Allocating and freeing a large object uses the page heap
    // directly, bypassing the MCache and MCentral free lists.
    //
    // The small objects on the MCache and MCentral free lists
    // may or may not be zeroed.  They are zeroed if and only if
    // the second word of the object is zero.  A span in the
    // page heap is zeroed unless s->needzero is set. When a span
    // is allocated to break into small objects, it is zeroed if needed
    // and s->needzero is set. There are two main benefits to delaying the
    // zeroing this way:
    //
    //	1. stack frames allocated from the small object lists
    //	   or the page heap can avoid zeroing altogether.
    //	2. the cost of zeroing when reusing a small object is
    //	   charged to the mutator, not the garbage collector.
    //
    // This code was written with an eye toward translating to Go
    // in the future.  Methods have the form Type_Method(Type *t, ...).
    
    
    package runtime
    
    
    	debugMalloc = false
    
    
    	flagNoScan = _FlagNoScan
    	flagNoZero = _FlagNoZero
    
    	maxTinySize   = _TinySize
    	tinySizeClass = _TinySizeClass
    	maxSmallSize  = _MaxSmallSize
    
    	pageShift = _PageShift
    	pageSize  = _PageSize
    	pageMask  = _PageMask
    
    	mSpanInUse = _MSpanInUse
    
    	concurrentSweep = _ConcurrentSweep
    
    const (
    	_PageShift = 13
    	_PageSize  = 1 << _PageShift
    	_PageMask  = _PageSize - 1
    )
    
    const (
    	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
    	_64bit = 1 << (^uintptr(0) >> 63) / 2
    
    	// Computed constant.  The definition of MaxSmallSize and the
    	// algorithm in msize.c produce some number of different allocation
    	// size classes.  NumSizeClasses is that number.  It's needed here
    	// because there are static arrays of this length; when msize runs its
    	// size choosing algorithm it double-checks that NumSizeClasses agrees.
    	_NumSizeClasses = 67
    
    	// Tunable constants.
    	_MaxSmallSize = 32 << 10
    
    	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
    	_TinySize      = 16
    	_TinySizeClass = 2
    
    	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
    	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
    	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth
    
    	// Per-P, per order stack segment cache size.
    	_StackCacheSize = 32 * 1024
    
    	// Number of orders that get caching.  Order 0 is FixedStack
    	// and each successive order is twice as large.
    	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks.  Larger stacks
    	// will be allocated directly.
    	// Since FixedStack is different on different systems, we
    	// must vary NumStackOrders to keep the same maximum cached size.
    	//   OS               | FixedStack | NumStackOrders
    	//   -----------------+------------+---------------
    	//   linux/darwin/bsd | 2KB        | 4
    	//   windows/32       | 4KB        | 3
    	//   windows/64       | 8KB        | 2
    	//   plan9            | 4KB        | 3
    	_NumStackOrders = 4 - ptrSize/4*goos_windows - 1*goos_plan9
    
    	// Number of bits in page to span calculations (4k pages).
    	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
    	// Windows counts memory used by page table into committed memory
    	// of the process, so we can't reserve too much memory.
    	// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
    	// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
    	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
    	_MHeapMap_TotalBits = (_64bit*goos_windows)*35 + (_64bit*(1-goos_windows))*37 + (1-_64bit)*32
    	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift
    
    	_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
    
    	// Max number of threads to run garbage collection.
    	// 2, 3, and 4 are all plausible maximums depending
    	// on the hardware details of the machine.  The garbage
    	// collector scales well to 32 cpus.
    	_MaxGcproc = 32
    )
    
    
    // Page number (address>>pageShift)
    type pageID uintptr
    
    
    const _MaxArena32 = 2 << 30
    
    // OS-defined helpers:
    //
    // sysAlloc obtains a large chunk of zeroed memory from the
    // operating system, typically on the order of a hundred kilobytes
    // or a megabyte.
    // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
    // may use larger alignment, so the caller must be careful to realign the
    // memory obtained by sysAlloc.
    //
    // SysUnused notifies the operating system that the contents
    // of the memory region are no longer needed and can be reused
    // for other purposes.
    // SysUsed notifies the operating system that the contents
    // of the memory region are needed again.
    //
    // SysFree returns it unconditionally; this is only used if
    // an out-of-memory error has been detected midway through
    // an allocation.  It is okay if SysFree is a no-op.
    //
    // SysReserve reserves address space without allocating memory.
    // If the pointer passed to it is non-nil, the caller wants the
    // reservation there, but SysReserve can still choose another
    // location if that one is unavailable.  On some systems and in some
    // cases SysReserve will simply check that the address space is
    // available and not actually reserve it.  If SysReserve returns
    // non-nil, it sets *reserved to true if the address space is
    // reserved, false if it has merely been checked.
    // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
    // may use larger alignment, so the caller must be careful to realign the
    // memory obtained by sysAlloc.
    //
    // SysMap maps previously reserved address space for use.
    // The reserved argument is true if the address space was really
    // reserved, not merely checked.
    //
    // SysFault marks a (already sysAlloc'd) region to fault
    // if accessed.  Used only for debugging the runtime.
    
    func mallocinit() {
    	initSizes()
    
    	if class_to_size[_TinySizeClass] != _TinySize {
    		throw("bad TinySizeClass")
    	}
    
    	var p, bitmapSize, spansSize, pSize, limit uintptr
    	var reserved bool
    
    	// limit = runtime.memlimit();
    	// See https://golang.org/issue/5049
    	// TODO(rsc): Fix after 1.1.
    	limit = 0
    
    	// Set up the allocation arena, a contiguous area of memory where
    	// allocated data will be found.  The arena begins with a bitmap large
    	// enough to hold 4 bits per allocated word.
    	if ptrSize == 8 && (limit == 0 || limit > 1<<30) {
    		// On a 64-bit machine, allocate from a single contiguous reservation.
    		// 128 GB (MaxMem) should be big enough for now.
    		//
    		// The code will work with the reservation at any address, but ask
    		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
    		// Allocating a 128 GB region takes away 37 bits, and the amd64
    		// doesn't let us choose the top 17 bits, so that leaves the 11 bits
    		// in the middle of 0x00c0 for us to choose.  Choosing 0x00c0 means
    		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
    		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
    		// UTF-8 sequences, and they are otherwise as far away from
    		// ff (likely a common byte) as possible.  If that fails, we try other 0xXXc0
    		// addresses.  An earlier attempt to use 0x11f8 caused out of memory errors
    		// on OS X during thread allocations.  0x00c0 causes conflicts with
    		// AddressSanitizer which reserves all memory up to 0x0100.
    		// These choices are both for debuggability and to reduce the
    		// odds of the conservative garbage collector not collecting memory
    		// because some non-pointer block of memory had a bit pattern
    		// that matched a memory address.
    		//
    		// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
    		// but it hardly matters: e0 00 is not valid UTF-8 either.
    		//
    		// If this fails we fall back to the 32 bit memory mechanism
    		arenaSize := round(_MaxMem, _PageSize)
    		bitmapSize = arenaSize / (ptrSize * 8 / 4)
    		spansSize = arenaSize / _PageSize * ptrSize
    		spansSize = round(spansSize, _PageSize)
    		for i := 0; i <= 0x7f; i++ {
    			p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
    			pSize = bitmapSize + spansSize + arenaSize + _PageSize
    			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
    			if p != 0 {
    				break
    			}
    		}
    	}
    
    	if p == 0 {
    		// On a 32-bit machine, we can't typically get away
    		// with a giant virtual address space reservation.
    		// Instead we map the memory information bitmap
    		// immediately after the data segment, large enough
    		// to handle another 2GB of mappings (256 MB),
    		// along with a reservation for an initial arena.
    		// When that gets used up, we'll start asking the kernel
    		// for any memory anywhere and hope it's in the 2GB
    		// following the bitmap (presumably the executable begins
    		// near the bottom of memory, so we'll have to use up
    		// most of memory before the kernel resorts to giving out
    		// memory before the beginning of the text segment).
    		//
    		// Alternatively we could reserve 512 MB bitmap, enough
    		// for 4GB of mappings, and then accept any memory the
    		// kernel threw at us, but normally that's a waste of 512 MB
    		// of address space, which is probably too much in a 32-bit world.
    
    		// If we fail to allocate, try again with a smaller arena.
    		// This is necessary on Android L where we share a process
    		// with ART, which reserves virtual memory aggressively.
    		arenaSizes := []uintptr{
    			512 << 20,
    			256 << 20,
    		}
    
    		for _, arenaSize := range arenaSizes {
    			bitmapSize = _MaxArena32 / (ptrSize * 8 / 4)
    			spansSize = _MaxArena32 / _PageSize * ptrSize
    			if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
    				bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
    				arenaSize = bitmapSize * 8
    				spansSize = arenaSize / _PageSize * ptrSize
    			}
    			spansSize = round(spansSize, _PageSize)
    
    			// SysReserve treats the address we ask for, end, as a hint,
    			// not as an absolute requirement.  If we ask for the end
    			// of the data segment but the operating system requires
    			// a little more space before we can start allocating, it will
    			// give out a slightly higher pointer.  Except QEMU, which
    			// is buggy, as usual: it won't adjust the pointer upward.
    			// So adjust it upward a little bit ourselves: 1/4 MB to get
    			// away from the running binary image and then round up
    			// to a MB boundary.
    			p = round(uintptr(unsafe.Pointer(&end))+(1<<18), 1<<20)
    			pSize = bitmapSize + spansSize + arenaSize + _PageSize
    			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
    			if p != 0 {
    				break
    			}
    		}
    		if p == 0 {
    			throw("runtime: cannot reserve arena virtual address space")
    		}
    	}
    
    	// PageSize can be larger than OS definition of page size,
    	// so SysReserve can give us a PageSize-unaligned pointer.
    	// To overcome this we ask for PageSize more and round up the pointer.
    	p1 := round(p, _PageSize)
    
    	mheap_.spans = (**mspan)(unsafe.Pointer(p1))
    	mheap_.bitmap = p1 + spansSize
    	mheap_.arena_start = p1 + (spansSize + bitmapSize)
    	mheap_.arena_used = mheap_.arena_start
    	mheap_.arena_end = p + pSize
    	mheap_.arena_reserved = reserved
    
    	if mheap_.arena_start&(_PageSize-1) != 0 {
    		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
    		throw("misrounded allocation in mallocinit")
    	}
    
    	// Initialize the rest of the allocator.
    	mHeap_Init(&mheap_, spansSize)
    	_g_ := getg()
    	_g_.m.mcache = allocmcache()
    }
    
    // sysReserveHigh reserves space somewhere high in the address space.
    // sysReserve doesn't actually reserve the full amount requested on
    // 64-bit systems, because of problems with ulimit. Instead it checks
    // that it can get the first 64 kB and assumes it can grab the rest as
    // needed. This doesn't work well with the "let the kernel pick an address"
    // mode, so don't do that. Pick a high address instead.
    func sysReserveHigh(n uintptr, reserved *bool) unsafe.Pointer {
    	if ptrSize == 4 {
    		return sysReserve(nil, n, reserved)
    	}
    
    	for i := 0; i <= 0x7f; i++ {
    		p := uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
    		*reserved = false
    		p = uintptr(sysReserve(unsafe.Pointer(p), n, reserved))
    		if p != 0 {
    			return unsafe.Pointer(p)
    		}
    	}
    
    	return sysReserve(nil, n, reserved)
    }
    
    func mHeap_SysAlloc(h *mheap, n uintptr) unsafe.Pointer {
    	if n > uintptr(h.arena_end)-uintptr(h.arena_used) {
    		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
    		// Reserve some more space.
    		p_size := round(n+_PageSize, 256<<20)
    		new_end := h.arena_end + p_size
    		if new_end <= h.arena_start+_MaxArena32 {
    			// TODO: It would be bad if part of the arena
    			// is reserved and part is not.
    			var reserved bool
    			p := uintptr(sysReserve((unsafe.Pointer)(h.arena_end), p_size, &reserved))
    			if p == h.arena_end {
    				h.arena_end = new_end
    				h.arena_reserved = reserved
    			} else if p+p_size <= h.arena_start+_MaxArena32 {
    				// Keep everything page-aligned.
    				// Our pages are bigger than hardware pages.
    				h.arena_end = p + p_size
    				h.arena_used = p + (-uintptr(p) & (_PageSize - 1))
    				h.arena_reserved = reserved
    			} else {
    				var stat uint64
    				sysFree((unsafe.Pointer)(p), p_size, &stat)
    			}
    		}
    	}
    
    	if n <= uintptr(h.arena_end)-uintptr(h.arena_used) {
    		// Keep taking from our reservation.
    		p := h.arena_used
    		sysMap((unsafe.Pointer)(p), n, h.arena_reserved, &memstats.heap_sys)
    		h.arena_used += n
    		mHeap_MapBits(h)
    		mHeap_MapSpans(h)
    		if raceenabled {
    			racemapshadow((unsafe.Pointer)(p), n)
    		}
    		if mheap_.shadow_enabled {
    			sysMap(unsafe.Pointer(p+mheap_.shadow_heap), n, h.shadow_reserved, &memstats.other_sys)
    		}
    
    		if uintptr(p)&(_PageSize-1) != 0 {
    			throw("misrounded allocation in MHeap_SysAlloc")
    		}
    		return (unsafe.Pointer)(p)
    	}
    
    	// If using 64-bit, our reservation is all we have.
    	if uintptr(h.arena_end)-uintptr(h.arena_start) >= _MaxArena32 {
    		return nil
    	}
    
    	// On 32-bit, once the reservation is gone we can
    	// try to get memory at a location chosen by the OS
    	// and hope that it is in the range we allocated bitmap for.
    	p_size := round(n, _PageSize) + _PageSize
    	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
    	if p == 0 {
    		return nil
    	}
    
    	if p < h.arena_start || uintptr(p)+p_size-uintptr(h.arena_start) >= _MaxArena32 {
    		print("runtime: memory allocated by OS (", p, ") not in usable range [", hex(h.arena_start), ",", hex(h.arena_start+_MaxArena32), ")\n")
    		sysFree((unsafe.Pointer)(p), p_size, &memstats.heap_sys)
    		return nil
    	}
    
    	p_end := p + p_size
    	p += -p & (_PageSize - 1)
    	if uintptr(p)+n > uintptr(h.arena_used) {
    		h.arena_used = p + n
    		if p_end > h.arena_end {
    			h.arena_end = p_end
    		}
    		mHeap_MapBits(h)
    		mHeap_MapSpans(h)
    		if raceenabled {
    			racemapshadow((unsafe.Pointer)(p), n)
    		}
    	}
    
    	if uintptr(p)&(_PageSize-1) != 0 {
    		throw("misrounded allocation in MHeap_SysAlloc")
    	}
    	return (unsafe.Pointer)(p)
    }
    
    
    // base address for all 0-byte allocations
    var zerobase uintptr
    
    const (
    	// flags to malloc
    	_FlagNoScan = 1 << 0 // GC doesn't have to scan object
    	_FlagNoZero = 1 << 1 // don't zero memory
    )
    
    // Allocate an object of size bytes.
    // Small objects are allocated from the per-P cache's free lists.
    
    // Large objects (> 32 kB) are allocated straight from the heap.
    
    func mallocgc(size uintptr, typ *_type, flags uint32) unsafe.Pointer {
    
    	shouldhelpgc := false
    
    	if size == 0 {
    
    		return unsafe.Pointer(&zerobase)
    
    	if flags&flagNoScan == 0 && typ == nil {
    
    		throw("malloc missing type")
    
    	// Set mp.mallocing to keep from being preempted by GC.
    	mp := acquirem()
    	if mp.mallocing != 0 {
    		throw("malloc deadlock")
    
    	var s *mspan
    	var x unsafe.Pointer
    	if size <= maxSmallSize {
    		if flags&flagNoScan != 0 && size < maxTinySize {
    			// Tiny allocator.
    			//
    			// Tiny allocator combines several tiny allocation requests
    			// into a single memory block. The resulting memory block
    			// is freed when all subobjects are unreachable. The subobjects
    			// must be FlagNoScan (don't have pointers), this ensures that
    			// the amount of potentially wasted memory is bounded.
    			//
    			// Size of the memory block used for combining (maxTinySize) is tunable.
    			// Current setting is 16 bytes, which relates to 2x worst case memory
    			// wastage (when all but one subobjects are unreachable).
    			// 8 bytes would result in no wastage at all, but provides less
    			// opportunities for combining.
    			// 32 bytes provides more opportunities for combining,
    			// but can lead to 4x worst case wastage.
    			// The best case winning is 8x regardless of block size.
    			//
    			// Objects obtained from tiny allocator must not be freed explicitly.
    			// So when an object will be freed explicitly, we ensure that
    			// its size >= maxTinySize.
    			//
    			// SetFinalizer has a special case for objects potentially coming
    			// from tiny allocator, it such case it allows to set finalizers
    			// for an inner byte of a memory block.
    			//
    			// The main targets of tiny allocator are small strings and
    			// standalone escaping variables. On a json benchmark
    			// the allocator reduces number of allocations by ~12% and
    			// reduces heap size by ~20%.
    
    			off := c.tinyoffset
    			// Align tiny pointer for required (conservative) alignment.
    			if size&7 == 0 {
    				off = round(off, 8)
    			} else if size&3 == 0 {
    				off = round(off, 4)
    			} else if size&1 == 0 {
    				off = round(off, 2)
    			}
    
    			if off+size <= maxTinySize && c.tiny != nil {
    
    				// The object fits into existing tiny block.
    				x = add(c.tiny, off)
    				c.tinyoffset = off + size
    				c.local_tinyallocs++
    
    				mp.mallocing = 0
    				releasem(mp)
    
    			}
    			// Allocate a new maxTinySize block.
    			s = c.alloc[tinySizeClass]
    			v := s.freelist
    
    					mCache_Refill(c, tinySizeClass)
    				})
    
    				shouldhelpgc = true
    
    				s = c.alloc[tinySizeClass]
    				v = s.freelist
    			}
    
    			s.ref++
    
    			// prefetchnta offers best performance, see change list message.
    			prefetchnta(uintptr(v.ptr().next))
    
    			x = unsafe.Pointer(v)
    			(*[2]uint64)(x)[0] = 0
    			(*[2]uint64)(x)[1] = 0
    			// See if we need to replace the existing tiny block with the new one
    			// based on amount of remaining free space.
    
    			if size < c.tinyoffset {
    				c.tiny = x
    				c.tinyoffset = size
    
    			}
    			size = maxTinySize
    		} else {
    			var sizeclass int8
    			if size <= 1024-8 {
    				sizeclass = size_to_class8[(size+7)>>3]
    			} else {
    				sizeclass = size_to_class128[(size-1024+127)>>7]
    			}
    			size = uintptr(class_to_size[sizeclass])
    			s = c.alloc[sizeclass]
    			v := s.freelist
    
    					mCache_Refill(c, int32(sizeclass))
    				})
    
    				shouldhelpgc = true
    
    				s = c.alloc[sizeclass]
    				v = s.freelist
    			}
    
    			s.ref++
    
    			// prefetchnta offers best performance, see change list message.
    			prefetchnta(uintptr(v.ptr().next))
    
    			x = unsafe.Pointer(v)
    			if flags&flagNoZero == 0 {
    
    				if size > 2*ptrSize && ((*[2]uintptr)(x))[1] != 0 {
    					memclr(unsafe.Pointer(v), size)
    				}
    			}
    		}
    
    		c.local_cachealloc += intptr(size)
    
    	} else {
    
    		shouldhelpgc = true
    
    			s = largeAlloc(size, uint32(flags))
    		})
    
    		x = unsafe.Pointer(uintptr(s.start << pageShift))
    		size = uintptr(s.elemsize)
    	}
    
    
    	if flags&flagNoScan != 0 {
    
    		// All objects are pre-marked as noscan. Nothing to do.
    	} else {
    		// If allocating a defer+arg block, now that we've picked a malloc size
    		// large enough to hold everything, cut the "asked for" size down to
    		// just the defer header, so that the GC bitmap will record the arg block
    		// as containing nothing at all (as if it were unused space at the end of
    		// a malloc block caused by size rounding).
    		// The defer arg areas are scanned as part of scanstack.
    		if typ == deferType {
    			dataSize = unsafe.Sizeof(_defer{})
    
    		heapBitsSetType(uintptr(x), size, dataSize, typ)
    
    
    	// GCmarkterminate allocates black
    	// All slots hold nil so no scanning is needed.
    	// This may be racing with GC so do it atomically if there can be
    	// a race marking the bit.
    	if gcphase == _GCmarktermination {
    
    		systemstack(func() {
    			gcmarknewobject_m(uintptr(x))
    		})
    
    	if mheap_.shadow_enabled {
    		clearshadow(uintptr(x), size)
    	}
    
    
    	if raceenabled {
    		racemalloc(x, size)
    	}
    
    	mp.mallocing = 0
    	releasem(mp)
    
    	if debug.allocfreetrace != 0 {
    		tracealloc(x, size, typ)
    	}
    
    
    	if rate := MemProfileRate; rate > 0 {
    		if size < uintptr(rate) && int32(size) < c.next_sample {
    			c.next_sample -= int32(size)
    		} else {
    
    			mp := acquirem()
    
    			profilealloc(mp, x, size)
    
    	if shouldtriggergc() {
    
    Russ Cox's avatar
    Russ Cox committed
    		startGC(gcBackgroundMode)
    
    	} else if shouldhelpgc && atomicloaduint(&bggc.working) == 1 {
    		// bggc.lock not taken since race on bggc.working is benign.
    		// At worse we don't call gchelpwork.
    		// Delay the gchelpwork until the epilogue so that it doesn't
    		// interfere with the inner working of malloc such as
    		// mcache refills that might happen while doing the gchelpwork
    		systemstack(gchelpwork)
    
    func largeAlloc(size uintptr, flag uint32) *mspan {
    	// print("largeAlloc size=", size, "\n")
    
    	if size+_PageSize < size {
    		throw("out of memory")
    	}
    	npages := size >> _PageShift
    	if size&_PageMask != 0 {
    		npages++
    	}
    	s := mHeap_Alloc(&mheap_, npages, 0, true, flag&_FlagNoZero == 0)
    	if s == nil {
    		throw("out of memory")
    	}
    	s.limit = uintptr(s.start)<<_PageShift + size
    	heapBitsForSpan(s.base()).initSpan(s.layout())
    	return s
    }
    
    
    // implementation of new builtin
    func newobject(typ *_type) unsafe.Pointer {
    
    	if typ.kind&kindNoPointers != 0 {
    		flags |= flagNoScan
    	}
    
    	return mallocgc(uintptr(typ.size), typ, flags)
    
    Russ Cox's avatar
    Russ Cox committed
    //go:linkname reflect_unsafe_New reflect.unsafe_New
    func reflect_unsafe_New(typ *_type) unsafe.Pointer {
    	return newobject(typ)
    }
    
    
    // implementation of make builtin for slices
    func newarray(typ *_type, n uintptr) unsafe.Pointer {
    
    	if typ.kind&kindNoPointers != 0 {
    		flags |= flagNoScan
    	}
    
    	if int(n) < 0 || (typ.size > 0 && n > _MaxMem/uintptr(typ.size)) {
    
    		panic("runtime: allocation size out of range")
    	}
    
    	return mallocgc(uintptr(typ.size)*n, typ, flags)
    
    Russ Cox's avatar
    Russ Cox committed
    //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
    func reflect_unsafe_NewArray(typ *_type, n uintptr) unsafe.Pointer {
    	return newarray(typ, n)
    }
    
    
    // rawmem returns a chunk of pointerless memory.  It is
    // not zeroed.
    func rawmem(size uintptr) unsafe.Pointer {
    
    	return mallocgc(size, nil, flagNoScan|flagNoZero)
    
    func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
    	c := mp.mcache
    	rate := MemProfileRate
    	if size < uintptr(rate) {
    		// pick next profile time
    		// If you change this, also change allocmcache.
    		if rate > 0x3fffffff { // make 2*rate not overflow
    			rate = 0x3fffffff
    		}
    
    		next := int32(fastrand1()) % (2 * int32(rate))
    
    		// Subtract the "remainder" of the current allocation.
    		// Otherwise objects that are close in size to sampling rate
    		// will be under-sampled, because we consistently discard this remainder.
    		next -= (int32(size) - c.next_sample)
    		if next < 0 {
    			next = 0
    		}
    		c.next_sample = next
    	}
    
    
    	mProf_Malloc(x, size)
    
    var persistent struct {
    	lock mutex
    
    }
    
    // Wrapper around sysAlloc that can allocate small chunks.
    // There is no associated free operation.
    // Intended for things like function/type/debug-related persistent data.
    // If align is 0, uses default align (currently 8).
    func persistentalloc(size, align uintptr, stat *uint64) unsafe.Pointer {
    	const (
    		chunk    = 256 << 10
    		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
    	)
    
    
    	if size == 0 {
    		throw("persistentalloc: size == 0")
    	}
    
    	if align != 0 {
    		if align&(align-1) != 0 {
    
    			throw("persistentalloc: align is not a power of 2")
    
    		}
    		if align > _PageSize {
    
    			throw("persistentalloc: align is too large")
    
    		}
    	} else {
    		align = 8
    	}
    
    	if size >= maxBlock {
    		return sysAlloc(size, stat)
    	}
    
    	lock(&persistent.lock)
    
    	persistent.off = round(persistent.off, align)
    
    	if persistent.off+size > chunk || persistent.base == nil {
    
    		persistent.base = sysAlloc(chunk, &memstats.other_sys)
    		if persistent.base == nil {
    
    			unlock(&persistent.lock)
    
    			throw("runtime: cannot allocate memory")
    
    	p := add(persistent.base, persistent.off)
    	persistent.off += size
    
    	unlock(&persistent.lock)
    
    	if stat != &memstats.other_sys {
    		xadd64(stat, int64(size))
    		xadd64(&memstats.other_sys, -int64(size))
    	}
    	return p
    }