Newer
Older
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"unsafe"
)
const (
flagNoScan = 1 << 0 // GC doesn't have to scan object
flagNoProfiling = 1 << 1 // must not profile
flagNoZero = 1 << 2 // don't zero memory
kindArray = 17
kindFunc = 19
kindInterface = 20
kindPtr = 22
kindStruct = 25
kindMask = 1<<6 - 1
kindGCProg = 1 << 6
kindNoPointers = 1 << 7
maxTinySize = 16
tinySizeClass = 2
maxSmallSize = 32 << 10
pageShift = 13
pageSize = 1 << pageShift
pageMask = pageSize - 1
wordsPerBitmapWord = ptrSize * 8 / 4
gcBits = 4
bitsPerPointer = 2
bitsMask = 1<<bitsPerPointer - 1
pointersPerByte = 8 / bitsPerPointer
bitPtrMask = bitsMask << 2
maxGCMask = 0 // disabled because wastes several bytes of memory
bitsDead = 0
bitsPointer = 2
bitMiddle = 0
bitBoundary = 1
bitAllocated = 2
bitMarked = 3
bitMask = bitMiddle | bitBoundary | bitAllocated | bitMarked
)
// All zero-sized allocations return a pointer to this byte.
var zeroObject byte
// Maximum possible heap size.
var maxMem uintptr
// Allocate an object of size bytes.
// Small objects are allocated from the per-P cache's free lists.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Large objects (> 32 kB) are allocated straight from the heap.
func gomallocgc(size uintptr, typ *_type, flags int) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroObject)
}
mp := acquirem()
if mp.mallocing != 0 {
gothrow("malloc/free - deadlock")
}
mp.mallocing = 1
size0 := size
c := mp.mcache
var s *mspan
var x unsafe.Pointer
if size <= maxSmallSize {
if flags&flagNoScan != 0 && size < maxTinySize {
// Tiny allocator.
//
// Tiny allocator combines several tiny allocation requests
// into a single memory block. The resulting memory block
// is freed when all subobjects are unreachable. The subobjects
// must be FlagNoScan (don't have pointers), this ensures that
// the amount of potentially wasted memory is bounded.
//
// Size of the memory block used for combining (maxTinySize) is tunable.
// Current setting is 16 bytes, which relates to 2x worst case memory
// wastage (when all but one subobjects are unreachable).
// 8 bytes would result in no wastage at all, but provides less
// opportunities for combining.
// 32 bytes provides more opportunities for combining,
// but can lead to 4x worst case wastage.
// The best case winning is 8x regardless of block size.
//
// Objects obtained from tiny allocator must not be freed explicitly.
// So when an object will be freed explicitly, we ensure that
// its size >= maxTinySize.
//
// SetFinalizer has a special case for objects potentially coming
// from tiny allocator, it such case it allows to set finalizers
// for an inner byte of a memory block.
//
// The main targets of tiny allocator are small strings and
// standalone escaping variables. On a json benchmark
// the allocator reduces number of allocations by ~12% and
// reduces heap size by ~20%.
tinysize := uintptr(c.tinysize)
if size <= tinysize {
tiny := unsafe.Pointer(c.tiny)
// Align tiny pointer for required (conservative) alignment.
if size&7 == 0 {
tiny = roundup(tiny, 8)
} else if size&3 == 0 {
tiny = roundup(tiny, 4)
} else if size&1 == 0 {
tiny = roundup(tiny, 2)
}
size1 := size + (uintptr(tiny) - uintptr(unsafe.Pointer(c.tiny)))
if size1 <= tinysize {
// The object fits into existing tiny block.
x = tiny
c.tiny = (*byte)(add(x, size))
c.tinysize -= uint(size1)
mp.mallocing = 0
releasem(mp)
return x
}
}
// Allocate a new maxTinySize block.
s = c.alloc[tinySizeClass]
v := s.freelist
if v == nil {
mp.scalararg[0] = tinySizeClass
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
s = c.alloc[tinySizeClass]
v = s.freelist
}
s.freelist = v.next
s.ref++
//TODO: prefetch v.next
x = unsafe.Pointer(v)
(*[2]uint64)(x)[0] = 0
(*[2]uint64)(x)[1] = 0
// See if we need to replace the existing tiny block with the new one
// based on amount of remaining free space.
if maxTinySize-size > tinysize {
c.tiny = (*byte)(add(x, size))
c.tinysize = uint(maxTinySize - size)
}
size = maxTinySize
} else {
var sizeclass int8
if size <= 1024-8 {
sizeclass = size_to_class8[(size+7)>>3]
} else {
sizeclass = size_to_class128[(size-1024+127)>>7]
}
size = uintptr(class_to_size[sizeclass])
s = c.alloc[sizeclass]
v := s.freelist
if v == nil {
mp.scalararg[0] = uint(sizeclass)
s = c.alloc[sizeclass]
v = s.freelist
}
s.freelist = v.next
s.ref++
//TODO: prefetch
x = unsafe.Pointer(v)
if flags&flagNoZero == 0 {
v.next = nil
if size > 2*ptrSize && ((*[2]uintptr)(x))[1] != 0 {
memclr(unsafe.Pointer(v), size)
}
}
}
c.local_cachealloc += int(size)
} else {
mp.scalararg[0] = uint(size)
mp.scalararg[1] = uint(flags)
s = (*mspan)(mp.ptrarg[0])
mp.ptrarg[0] = nil
x = unsafe.Pointer(uintptr(s.start << pageShift))
size = uintptr(s.elemsize)
}
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// From here till marked label marking the object as allocated
// and storing type info in the GC bitmap.
arena_start := uintptr(unsafe.Pointer(mheap_.arena_start))
off := (uintptr(x) - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
if debugMalloc && (((*xbits)>>shift)&bitMask) != bitBoundary {
gothrow("bad bits in markallocated")
}
var ti, te uintptr
var ptrmask *uint8
if flags&flagNoScan != 0 {
// bitsDead in the first quadruple means don't scan.
if size == ptrSize {
*xbits = (*xbits & ^((bitBoundary | bitPtrMask) << shift)) | ((bitAllocated + (bitsDead << 2)) << shift)
} else {
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = bitAllocated + (bitsDead << 2)
}
goto marked
}
if size == ptrSize {
// It's one word and it has pointers, it must be a pointer.
*xbits = (*xbits & ^((bitBoundary | bitPtrMask) << shift)) | ((bitAllocated | (bitsPointer << 2)) << shift)
goto marked
}
if typ != nil && (uintptr(typ.gc[0])|uintptr(typ.gc[1])) != 0 && uintptr(typ.size) > ptrSize {
if typ.kind&kindGCProg != 0 {
nptr := (uintptr(typ.size) + ptrSize - 1) / ptrSize
masksize := nptr
if masksize%2 != 0 {
masksize *= 2 // repeated
}
masksize = masksize * pointersPerByte / 8 // 4 bits per word
masksize++ // unroll flag in the beginning
if masksize > maxGCMask && typ.gc[1] != 0 {
// If the mask is too large, unroll the program directly
// into the GC bitmap. It's 7 times slower than copying
// from the pre-unrolled mask, but saves 1/16 of type size
// memory for the mask.
mp.ptrarg[0] = x
mp.ptrarg[1] = unsafe.Pointer(typ)
mp.scalararg[0] = uint(size)
mp.scalararg[1] = uint(size0)
onM(&unrollgcproginplace_m)
goto marked
}
ptrmask = (*uint8)(unsafe.Pointer(uintptr(typ.gc[0])))
// Check whether the program is already unrolled.
if uintptr(goatomicloadp(unsafe.Pointer(ptrmask)))&0xff == 0 {
mp.ptrarg[0] = unsafe.Pointer(typ)
onM(&unrollgcprog_m)
}
ptrmask = (*uint8)(add(unsafe.Pointer(ptrmask), 1)) // skip the unroll flag byte
} else {
ptrmask = (*uint8)(unsafe.Pointer(&typ.gc[0])) // embed mask
}
if size == 2*ptrSize {
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = *ptrmask | bitAllocated
goto marked
}
te = uintptr(typ.size) / ptrSize
// If the type occupies odd number of words, its mask is repeated.
if te%2 == 0 {
te /= 2
}
}
if size == 2*ptrSize {
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = (bitsPointer << 2) | (bitsPointer << 6) | bitAllocated
goto marked
}
// Copy pointer bitmask into the bitmap.
for i := uintptr(0); i < size0; i += 2 * ptrSize {
v := uint8((bitsPointer << 2) | (bitsPointer << 6))
if ptrmask != nil {
v = *(*uint8)(add(unsafe.Pointer(ptrmask), ti))
ti++
if ti == te {
ti = 0
}
}
if i == 0 {
v |= bitAllocated
}
if i+ptrSize == size0 {
v &= ^uint8(bitPtrMask << 4)
}
off := (uintptr(x) + i - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = v
}
if size0%(2*ptrSize) == 0 && size0 < size {
// Mark the word after last object's word as bitsDead.
off := (uintptr(x) + size0 - arena_start) / ptrSize
xbits := (*uintptr)(unsafe.Pointer(arena_start - off/wordsPerBitmapWord*ptrSize - ptrSize))
shift := (off % wordsPerBitmapWord) * gcBits
xbitsb := (*uint8)(add(unsafe.Pointer(xbits), shift/8))
*xbitsb = bitsDead << 2
}
marked:
mp.mallocing = 0
if raceenabled {
racemalloc(x, size)
}
if debug.allocfreetrace != 0 {
tracealloc(x, size, typ)
}
if flags&flagNoProfiling == 0 {
rate := MemProfileRate
if rate > 0 {
if size < uintptr(rate) && int32(size) < c.next_sample {
c.next_sample -= int32(size)
} else {
profilealloc(mp, x, size)
}
}
}
releasem(mp)
if memstats.heap_alloc >= memstats.next_gc {
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
gogc(0)
}
return x
}
// cmallocgc is a trampoline used to call the Go malloc from C.
func cmallocgc(size uintptr, typ *_type, flags int, ret *unsafe.Pointer) {
*ret = gomallocgc(size, typ, flags)
}
// implementation of new builtin
func newobject(typ *_type) unsafe.Pointer {
flags := 0
if typ.kind&kindNoPointers != 0 {
flags |= flagNoScan
}
return gomallocgc(uintptr(typ.size), typ, flags)
}
// implementation of make builtin for slices
func newarray(typ *_type, n uintptr) unsafe.Pointer {
flags := 0
if typ.kind&kindNoPointers != 0 {
flags |= flagNoScan
}
if int(n) < 0 || (typ.size > 0 && n > maxMem/uintptr(typ.size)) {
panic("runtime: allocation size out of range")
}
return gomallocgc(uintptr(typ.size)*n, typ, flags)
}
// rawmem returns a chunk of pointerless memory. It is
// not zeroed.
func rawmem(size uintptr) unsafe.Pointer {
return gomallocgc(size, nil, flagNoScan|flagNoZero)
}
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// round size up to next size class
func goroundupsize(size uintptr) uintptr {
if size < maxSmallSize {
if size <= 1024-8 {
return uintptr(class_to_size[size_to_class8[(size+7)>>3]])
}
return uintptr(class_to_size[size_to_class128[(size-1024+127)>>7]])
}
if size+pageSize < size {
return size
}
return (size + pageSize - 1) &^ pageMask
}
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
c := mp.mcache
rate := MemProfileRate
if size < uintptr(rate) {
// pick next profile time
// If you change this, also change allocmcache.
if rate > 0x3fffffff { // make 2*rate not overflow
rate = 0x3fffffff
}
next := int32(fastrand2()) % (2 * int32(rate))
// Subtract the "remainder" of the current allocation.
// Otherwise objects that are close in size to sampling rate
// will be under-sampled, because we consistently discard this remainder.
next -= (int32(size) - c.next_sample)
if next < 0 {
next = 0
}
c.next_sample = next
}
mp.scalararg[0] = uint(size)
mp.ptrarg[0] = x
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
}
// force = 1 - do GC regardless of current heap usage
// force = 2 - go GC and eager sweep
func gogc(force int32) {
if memstats.enablegc == 0 {
return
}
// TODO: should never happen? Only C calls malloc while holding a lock?
mp := acquirem()
if mp.locks > 1 {
releasem(mp)
return
}
releasem(mp)
if panicking != 0 {
return
}
if gcpercent == gcpercentUnknown {
golock(&mheap_.lock)
if gcpercent == gcpercentUnknown {
gcpercent = goreadgogc()
}
gounlock(&mheap_.lock)
}
if gcpercent < 0 {
return
}
semacquire(&worldsema, false)
if force == 0 && memstats.heap_alloc < memstats.next_gc {
// typically threads which lost the race to grab
// worldsema exit here when gc is done.
semrelease(&worldsema)
return
}
// Ok, we're doing it! Stop everybody else
startTime := gonanotime()
mp = acquirem()
mp.gcing = 1
stoptheworld()
clearpools()
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). We also
// need to switch to g0 so we can shrink the stack.
n := 1
if debug.gctrace > 1 {
n = 2
}
for i := 0; i < n; i++ {
if i > 0 {
startTime = gonanotime()
}
// switch to g0, call gc, then switch back
mp.scalararg[0] = uint(startTime)
if force >= 2 {
mp.scalararg[1] = 1 // eagersweep
} else {
mp.scalararg[1] = 0
}
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
}
// all done
mp.gcing = 0
semrelease(&worldsema)
starttheworld()
releasem(mp)
// now that gc is done, kick off finalizer thread if needed
if !concurrentSweep {
// give the queued finalizers, if any, a chance to run
gosched()
}
}
// GC runs a garbage collection.
func GC() {
gogc(2)
}
// SetFinalizer sets the finalizer associated with x to f.
// When the garbage collector finds an unreachable block
// with an associated finalizer, it clears the association and runs
// f(x) in a separate goroutine. This makes x reachable again, but
// now without an associated finalizer. Assuming that SetFinalizer
// is not called again, the next time the garbage collector sees
// that x is unreachable, it will free x.
//
// SetFinalizer(x, nil) clears any finalizer associated with x.
//
// The argument x must be a pointer to an object allocated by
// calling new or by taking the address of a composite literal.
// The argument f must be a function that takes a single argument
// to which x's type can be assigned, and can have arbitrary ignored return
// values. If either of these is not true, SetFinalizer aborts the
// program.
//
// Finalizers are run in dependency order: if A points at B, both have
// finalizers, and they are otherwise unreachable, only the finalizer
// for A runs; once A is freed, the finalizer for B can run.
// If a cyclic structure includes a block with a finalizer, that
// cycle is not guaranteed to be garbage collected and the finalizer
// is not guaranteed to run, because there is no ordering that
// respects the dependencies.
//
// The finalizer for x is scheduled to run at some arbitrary time after
// x becomes unreachable.
// There is no guarantee that finalizers will run before a program exits,
// so typically they are useful only for releasing non-memory resources
// associated with an object during a long-running program.
// For example, an os.File object could use a finalizer to close the
// associated operating system file descriptor when a program discards
// an os.File without calling Close, but it would be a mistake
// to depend on a finalizer to flush an in-memory I/O buffer such as a
// bufio.Writer, because the buffer would not be flushed at program exit.
//
// It is not guaranteed that a finalizer will run if the size of *x is
// zero bytes.
//
// A single goroutine runs all finalizers for a program, sequentially.
// If a finalizer must run for a long time, it should do so by starting
// a new goroutine.
func SetFinalizer(obj interface{}, finalizer interface{}) {
// We do just enough work here to make the mcall type safe.
// The rest is done on the M stack.
e := (*eface)(unsafe.Pointer(&obj))
typ := e._type
if typ == nil {
gothrow("runtime.SetFinalizer: first argument is nil")
}
if typ.kind&kindMask != kindPtr {
gothrow("runtime.SetFinalizer: first argument is " + *typ._string + ", not pointer")
}
f := (*eface)(unsafe.Pointer(&finalizer))
ftyp := f._type
if ftyp != nil && ftyp.kind&kindMask != kindFunc {
gothrow("runtime.SetFinalizer: second argument is " + *ftyp._string + ", not a function")
}
mp := acquirem()
mp.ptrarg[0] = unsafe.Pointer(typ)
mp.ptrarg[1] = e.data
mp.ptrarg[2] = unsafe.Pointer(ftyp)
mp.ptrarg[3] = f.data