Newer
Older
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/types"
"cmd/internal/sys"
"unicode/utf8"
)
func typecheckrange(n ir.Node) {
// Typechecking order is important here:
// 0. first typecheck range expression (slice/map/chan),
// it is evaluated only once and so logically it is not part of the loop.
// 1. typecheck produced values,
// this part can declare new vars and so it must be typechecked before body,
// because body can contain a closure that captures the vars.
// 2. decldepth++ to denote loop body.
// 3. typecheck body.
// 4. decldepth--.
typecheckrangeExpr(n)
// second half of dance, the first half being typecheckrangeExpr
n.SetTypecheck(1)
ls := n.List().Slice()
for i1, n1 := range ls {
if n1.Typecheck() == 0 {
ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
typecheckslice(n.Body().Slice(), ctxStmt)
func typecheckrangeExpr(n ir.Node) {
n.SetRight(typecheck(n.Right(), ctxExpr))
t := n.Right().Type()
if t == nil {
}
// delicate little dance. see typecheckas2
ls := n.List().Slice()
for i1, n1 := range ls {
if !ir.DeclaredBy(n1, n) {
ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
}
}
if t.IsPtr() && t.Elem().IsArray() {
n.SetType(t)
var t1, t2 *types.Type
toomany := false
switch t.Kind() {
default:
base.ErrorfAt(n.Pos(), "cannot range over %L", n.Right())
case types.TARRAY, types.TSLICE:
t1 = types.Types[types.TINT]
case types.TMAP:
t2 = t.Elem()
case types.TCHAN:
base.ErrorfAt(n.Pos(), "invalid operation: range %v (receive from send-only type %v)", n.Right(), n.Right().Type())
t2 = nil
if n.List().Len() == 2 {
case types.TSTRING:
t1 = types.Types[types.TINT]
t2 = types.RuneType
if n.List().Len() > 2 || toomany {
base.ErrorfAt(n.Pos(), "too many variables in range")
var v1, v2 ir.Node
if n.List().Len() != 0 {
v1 = n.List().First()
if n.List().Len() > 1 {
v2 = n.List().Second()
}
// this is not only an optimization but also a requirement in the spec.
// "if the second iteration variable is the blank identifier, the range
// clause is equivalent to the same clause with only the first variable
// present."
if ir.IsBlank(v2) {
if v1 != nil {
n.PtrList().Set1(v1)
}
v2 = nil
}
if v1 != nil {
if ir.DeclaredBy(v1, n) {
v1.SetType(t1)
} else if v1.Type() != nil {
if op, why := assignop(t1, v1.Type()); op == ir.OXXX {
base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t1, v1, why)
}
checkassign(n, v1)
}
if v2 != nil {
if ir.DeclaredBy(v2, n) {
v2.SetType(t2)
} else if v2.Type() != nil {
if op, why := assignop(t2, v2.Type()); op == ir.OXXX {
base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t2, v2, why)
}
checkassign(n, v2)
}
}
func cheapComputableIndex(width int64) bool {
switch thearch.LinkArch.Family {
// MIPS does not have R+R addressing
// Arm64 may lack ability to generate this code in our assembler,
// but the architecture supports it.
case sys.PPC64, sys.S390X:
return width == 1
case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
switch width {
case 1, 2, 4, 8:
return true
}
}
return false
}
// walkrange transforms various forms of ORANGE into
// simpler forms. The result must be assigned back to n.
// Node n may also be modified in place, and may also be
// the returned node.
func walkrange(nrange ir.Node) ir.Node {
if isMapClear(nrange) {
m := nrange.Right()
n := mapClear(m)
base.Pos = lno
nfor := ir.NodAt(nrange.Pos(), ir.OFOR, nil, nil)
nfor.SetInit(nrange.Init())
nfor.SetSym(nrange.Sym())
// variable name conventions:
// ohv1, hv1, hv2: hidden (old) val 1, 2
// ha, hit: hidden aggregate, iterator
// hn, hp: hidden len, pointer
// hb: hidden bool
// a, v1, v2: not hidden aggregate, val 1, 2
t := nrange.Type()
a := nrange.Right()
lno := setlineno(a)
var v1, v2 ir.Node
l := nrange.List().Len()
if l > 0 {
v1 = nrange.List().First()
if l > 1 {
v2 = nrange.List().Second()
}
if ir.IsBlank(v2) {
v2 = nil
if ir.IsBlank(v1) && v2 == nil {
v1 = nil
}
if v1 == nil && v2 != nil {
base.Fatalf("walkrange: v2 != nil while v1 == nil")
var ifGuard ir.Node
var body []ir.Node
var init []ir.Node
switch t.Kind() {
default:
base.Fatalf("walkrange")
case types.TARRAY, types.TSLICE:
if nn := arrayClear(nrange, v1, v2, a); nn != nil {
base.Pos = lno
return nn
}
// order.stmt arranged for a copy of the array/slice variable if needed.
ha := a
hv1 := temp(types.Types[types.TINT])
hn := temp(types.Types[types.TINT])
init = append(init, ir.Nod(ir.OAS, hv1, nil))
init = append(init, ir.Nod(ir.OAS, hn, ir.Nod(ir.OLEN, ha, nil)))
nfor.SetLeft(ir.Nod(ir.OLT, hv1, hn))
nfor.SetRight(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
// for range ha { body }
if v1 == nil {
break
}
// for v1 := range ha { body }
if v2 == nil {
body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
break
}
// for v1, v2 := range ha { body }
if cheapComputableIndex(nrange.Type().Elem().Width) {
// v1, v2 = hv1, ha[hv1]
tmp := ir.Nod(ir.OINDEX, ha, hv1)
tmp.SetBounded(true)
// Use OAS2 to correctly handle assignments
// of the form "v1, a[v1] := range".
a := ir.Nod(ir.OAS2, nil, nil)
a.PtrList().Set2(v1, v2)
a.PtrRlist().Set2(hv1, tmp)
body = []ir.Node{a}
break
}
// TODO(austin): OFORUNTIL is a strange beast, but is
// necessary for expressing the control flow we need
// while also making "break" and "continue" work. It
// would be nice to just lower ORANGE during SSA, but
// racewalk needs to see many of the operations
// involved in ORANGE's implementation. If racewalk
// moves into SSA, consider moving ORANGE into SSA and
// eliminating OFORUNTIL.
// TODO(austin): OFORUNTIL inhibits bounds-check
// elimination on the index variable (see #20711).
// Enhance the prove pass to understand this.
ifGuard = ir.Nod(ir.OIF, nil, nil)
ifGuard.SetLeft(ir.Nod(ir.OLT, hv1, hn))
nfor.SetOp(ir.OFORUNTIL)
hp := temp(types.NewPtr(nrange.Type().Elem()))
tmp := ir.Nod(ir.OINDEX, ha, nodintconst(0))
tmp.SetBounded(true)
init = append(init, ir.Nod(ir.OAS, hp, nodAddr(tmp)))
// Use OAS2 to correctly handle assignments
// of the form "v1, a[v1] := range".
a := ir.Nod(ir.OAS2, nil, nil)
a.PtrList().Set2(v1, v2)
a.PtrRlist().Set2(hv1, ir.Nod(ir.ODEREF, hp, nil))
body = append(body, a)
// Advance pointer as part of the late increment.
//
// This runs *after* the condition check, so we know
// advancing the pointer is safe and won't go past the
// end of the allocation.
as := ir.Nod(ir.OAS, hp, addptr(hp, t.Elem().Width))
nfor.PtrList().Set1(typecheck(as, ctxStmt))
case types.TMAP:
// order.stmt allocated the iterator for us.
// we only use a once, so no copy needed.
ha := a
hit := prealloc[nrange]
th := hit.Type()
keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter
elemsym := th.Field(1).Sym // ditto
fn := syslook("mapiterinit")
Matthew Dempsky
committed
fn = substArgTypes(fn, t.Key(), t.Elem(), th)
init = append(init, mkcall1(fn, nil, nil, typename(t), ha, nodAddr(hit)))
nfor.SetLeft(ir.Nod(ir.ONE, nodSym(ir.ODOT, hit, keysym), nodnil()))
fn = syslook("mapiternext")
fn = substArgTypes(fn, th)
nfor.SetRight(mkcall1(fn, nil, nil, nodAddr(hit)))
key := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, keysym), nil)
if v1 == nil {
body = nil
} else if v2 == nil {
body = []ir.Node{ir.Nod(ir.OAS, v1, key)}
} else {
elem := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, elemsym), nil)
a := ir.Nod(ir.OAS2, nil, nil)
a.PtrList().Set2(v1, v2)
a.PtrRlist().Set2(key, elem)
body = []ir.Node{a}
}
case types.TCHAN:
// order.stmt arranged for a copy of the channel variable.
ha := a
if t.Elem().HasPointers() {
init = append(init, ir.Nod(ir.OAS, hv1, nil))
hb := temp(types.Types[types.TBOOL])
nfor.SetLeft(ir.Nod(ir.ONE, hb, nodbool(false)))
a := ir.Nod(ir.OAS2RECV, nil, nil)
a.PtrList().Set2(hv1, hb)
a.PtrRlist().Set1(ir.Nod(ir.ORECV, ha, nil))
nfor.Left().PtrInit().Set1(a)
if v1 == nil {
body = nil
} else {
body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
// Zero hv1. This prevents hv1 from being the sole, inaccessible
// reference to an otherwise GC-able value during the next channel receive.
// See issue 15281.
body = append(body, ir.Nod(ir.OAS, hv1, nil))
case types.TSTRING:
// Transform string range statements like "for v1, v2 = range a" into
//
// ha := a
// for hv1 := 0; hv1 < len(ha); {
// hv2 := rune(ha[hv1])
// if hv2 < utf8.RuneSelf {
// hv1++
// } else {
// hv2, hv1 = decoderune(ha, hv1)
// v1, v2 = hv1t, hv2
// // original body
// }
// order.stmt arranged for a copy of the string variable.
ha := a
hv1 := temp(types.Types[types.TINT])
hv1t := temp(types.Types[types.TINT])
hv2 := temp(types.RuneType)
init = append(init, ir.Nod(ir.OAS, hv1, nil))
nfor.SetLeft(ir.Nod(ir.OLT, hv1, ir.Nod(ir.OLEN, ha, nil)))
if v1 != nil {
body = append(body, ir.Nod(ir.OAS, hv1t, hv1))
// hv2 := rune(ha[hv1])
nind := ir.Nod(ir.OINDEX, ha, hv1)
Aliaksandr Valialkin
committed
nind.SetBounded(true)
body = append(body, ir.Nod(ir.OAS, hv2, conv(nind, types.RuneType)))
// if hv2 < utf8.RuneSelf
nif := ir.Nod(ir.OIF, nil, nil)
nif.SetLeft(ir.Nod(ir.OLT, hv2, nodintconst(utf8.RuneSelf)))
nif.PtrBody().Set1(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
eif := ir.Nod(ir.OAS2, nil, nil)
nif.PtrRlist().Set1(eif)
// hv2, hv1 = decoderune(ha, hv1)
eif.PtrList().Set2(hv2, hv1)
fn := syslook("decoderune")
eif.PtrRlist().Set1(mkcall1(fn, fn.Type().Results(), nil, ha, hv1))
body = append(body, nif)
if v1 != nil {
if v2 != nil {
// v1, v2 = hv1t, hv2
a := ir.Nod(ir.OAS2, nil, nil)
a.PtrList().Set2(v1, v2)
a.PtrRlist().Set2(hv1t, hv2)
body = append(body, a)
} else {
// v1 = hv1t
body = append(body, ir.Nod(ir.OAS, v1, hv1t))
}
}
if ifGuard != nil {
ifGuard.PtrInit().Append(init...)
} else {
nfor.PtrInit().Append(init...)
typecheckslice(nfor.Left().Init().Slice(), ctxStmt)
nfor.SetLeft(typecheck(nfor.Left(), ctxExpr))
nfor.SetLeft(defaultlit(nfor.Left(), nil))
nfor.SetRight(typecheck(nfor.Right(), ctxStmt))
nfor.PtrBody().Append(body...)
nfor.PtrBody().Append(nrange.Body().Slice()...)
var n ir.Node = nfor
if ifGuard != nil {
ifGuard.PtrBody().Set1(n)
n = ifGuard
}
base.Pos = lno
return n
// isMapClear checks if n is of the form:
//
// for k := range m {
// delete(m, k)
// }
//
// where == for keys of map m is reflexive.
func isMapClear(n ir.Node) bool {
if base.Flag.N != 0 || instrumenting {
if n.Op() != ir.ORANGE || n.Type().Kind() != types.TMAP || n.List().Len() != 1 {
k := n.List().First()
if k == nil || ir.IsBlank(k) {
return false
}
// Require k to be a new variable name.
if !ir.DeclaredBy(k, n) {
if n.Body().Len() != 1 {
stmt := n.Body().First() // only stmt in body
if stmt == nil || stmt.Op() != ir.ODELETE {
m := n.Right()
if !samesafeexpr(stmt.List().First(), m) || !samesafeexpr(stmt.List().Second(), k) {
return false
}
// Keys where equality is not reflexive can not be deleted from maps.
if !isreflexive(m.Type().Key()) {
return false
}
return true
}
// mapClear constructs a call to runtime.mapclear for the map m.
func mapClear(m ir.Node) ir.Node {
t := m.Type()
// instantiate mapclear(typ *type, hmap map[any]any)
fn := syslook("mapclear")
fn = substArgTypes(fn, t.Key(), t.Elem())
n := mkcall1(fn, nil, nil, typename(t), m)
n = walkstmt(n)
return n
}
// Lower n into runtime·memclr if possible, for
// fast zeroing of slices and arrays (issue 5373).
// Look for instances of
//
// for i := range a {
// a[i] = zero
// }
//
// in which the evaluation of a is side-effect-free.
//
// Parameters are as in walkrange: "for v1, v2 = range a".
func arrayClear(loop, v1, v2, a ir.Node) ir.Node {
if base.Flag.N != 0 || instrumenting {
return nil
if v1 == nil || v2 != nil {
return nil
if loop.Body().Len() != 1 || loop.Body().First() == nil {
return nil
stmt := loop.Body().First() // only stmt in body
if stmt.Op() != ir.OAS || stmt.Left().Op() != ir.OINDEX {
return nil
if !samesafeexpr(stmt.Left().Left(), a) || !samesafeexpr(stmt.Left().Right(), v1) {
return nil
elemsize := loop.Type().Elem().Width
if elemsize <= 0 || !isZero(stmt.Right()) {
return nil
}
// Convert to
// if len(a) != 0 {
// hp = &a[0]
// hn = len(a)*sizeof(elem(a))
// memclr{NoHeap,Has}Pointers(hp, hn)
// i = len(a) - 1
// }
n := ir.Nod(ir.OIF, nil, nil)
n.PtrBody().Set(nil)
n.SetLeft(ir.Nod(ir.ONE, ir.Nod(ir.OLEN, a, nil), nodintconst(0)))
// hp = &a[0]
hp := temp(types.Types[types.TUNSAFEPTR])
ix := ir.Nod(ir.OINDEX, a, nodintconst(0))
ix.SetBounded(true)
addr := convnop(nodAddr(ix), types.Types[types.TUNSAFEPTR])
n.PtrBody().Append(ir.Nod(ir.OAS, hp, addr))
// hn = len(a) * sizeof(elem(a))
hn := temp(types.Types[types.TUINTPTR])
mul := conv(ir.Nod(ir.OMUL, ir.Nod(ir.OLEN, a, nil), nodintconst(elemsize)), types.Types[types.TUINTPTR])
n.PtrBody().Append(ir.Nod(ir.OAS, hn, mul))
var fn ir.Node
if a.Type().Elem().HasPointers() {
// memclrHasPointers(hp, hn)
Curfn.SetWBPos(stmt.Pos())
fn = mkcall("memclrHasPointers", nil, nil, hp, hn)
} else {
// memclrNoHeapPointers(hp, hn)
fn = mkcall("memclrNoHeapPointers", nil, nil, hp, hn)
}
n.PtrBody().Append(fn)
// i = len(a) - 1
v1 = ir.Nod(ir.OAS, v1, ir.Nod(ir.OSUB, ir.Nod(ir.OLEN, a, nil), nodintconst(1)))
n.PtrBody().Append(v1)
n.SetLeft(typecheck(n.Left(), ctxExpr))
n.SetLeft(defaultlit(n.Left(), nil))
typecheckslice(n.Body().Slice(), ctxStmt)
return walkstmt(n)
// addptr returns (*T)(uintptr(p) + n).
func addptr(p ir.Node, n int64) ir.Node {
t := p.Type()
p = ir.Nod(ir.OCONVNOP, p, nil)
p.SetType(types.Types[types.TUINTPTR])
p = ir.Nod(ir.OADD, p, nodintconst(n))
p = ir.Nod(ir.OCONVNOP, p, nil)
p.SetType(t)