Skip to content
Snippets Groups Projects
range.go 14.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2009 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    package gc
    
    
    	// Typechecking order is important here:
    	// 0. first typecheck range expression (slice/map/chan),
    	//	it is evaluated only once and so logically it is not part of the loop.
    
    	// 1. typecheck produced values,
    
    	//	this part can declare new vars and so it must be typechecked before body,
    	//	because body can contain a closure that captures the vars.
    	// 2. decldepth++ to denote loop body.
    	// 3. typecheck body.
    	// 4. decldepth--.
    
    	typecheckrangeExpr(n)
    
    	// second half of dance, the first half being typecheckrangeExpr
    	n.SetTypecheck(1)
    
    	for i1, n1 := range ls {
    		if n1.Typecheck() == 0 {
    
    			ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
    
    	typecheckslice(n.Body().Slice(), ctxStmt)
    
    func typecheckrangeExpr(n ir.Node) {
    
    	n.SetRight(typecheck(n.Right(), ctxExpr))
    
    	}
    	// delicate little dance.  see typecheckas2
    
    	for i1, n1 := range ls {
    
    		if !ir.DeclaredBy(n1, n) {
    
    			ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign)
    
    	if t.IsPtr() && t.Elem().IsArray() {
    
    		t = t.Elem()
    
    	var t1, t2 *types.Type
    	toomany := false
    
    		base.ErrorfAt(n.Pos(), "cannot range over %L", n.Right())
    
    	case types.TARRAY, types.TSLICE:
    		t1 = types.Types[types.TINT]
    
    		t2 = t.Elem()
    
    		if !t.ChanDir().CanRecv() {
    
    			base.ErrorfAt(n.Pos(), "invalid operation: range %v (receive from send-only type %v)", n.Right(), n.Right().Type())
    
    		t1 = t.Elem()
    
    	case types.TSTRING:
    		t1 = types.Types[types.TINT]
    
    	if n.List().Len() > 2 || toomany {
    		base.ErrorfAt(n.Pos(), "too many variables in range")
    
    	if n.List().Len() != 0 {
    		v1 = n.List().First()
    
    	if n.List().Len() > 1 {
    		v2 = n.List().Second()
    
    	// this is not only an optimization but also a requirement in the spec.
    
    	// "if the second iteration variable is the blank identifier, the range
    	// clause is equivalent to the same clause with only the first variable
    	// present."
    
    			v1.SetType(t1)
    		} else if v1.Type() != nil {
    			if op, why := assignop(t1, v1.Type()); op == ir.OXXX {
    				base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t1, v1, why)
    
    			v2.SetType(t2)
    		} else if v2.Type() != nil {
    			if op, why := assignop(t2, v2.Type()); op == ir.OXXX {
    				base.ErrorfAt(n.Pos(), "cannot assign type %v to %L in range%s", t2, v2, why)
    
    func cheapComputableIndex(width int64) bool {
    	switch thearch.LinkArch.Family {
    	// MIPS does not have R+R addressing
    	// Arm64 may lack ability to generate this code in our assembler,
    	// but the architecture supports it.
    	case sys.PPC64, sys.S390X:
    		return width == 1
    	case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
    		switch width {
    		case 1, 2, 4, 8:
    			return true
    		}
    	}
    	return false
    }
    
    
    // walkrange transforms various forms of ORANGE into
    // simpler forms.  The result must be assigned back to n.
    // Node n may also be modified in place, and may also be
    // the returned node.
    
    func walkrange(nrange ir.Node) ir.Node {
    	if isMapClear(nrange) {
    		m := nrange.Right()
    
    	nfor := ir.NodAt(nrange.Pos(), ir.OFOR, nil, nil)
    	nfor.SetInit(nrange.Init())
    	nfor.SetSym(nrange.Sym())
    
    
    	// variable name conventions:
    	//	ohv1, hv1, hv2: hidden (old) val 1, 2
    	//	ha, hit: hidden aggregate, iterator
    	//	hn, hp: hidden len, pointer
    	//	hb: hidden bool
    	//	a, v1, v2: not hidden aggregate, val 1, 2
    
    
    	if ir.IsBlank(v1) && v2 == nil {
    
    		base.Fatalf("walkrange: v2 != nil while v1 == nil")
    
    	case types.TARRAY, types.TSLICE:
    
    		if nn := arrayClear(nrange, v1, v2, a); nn != nil {
    
    		// order.stmt arranged for a copy of the array/slice variable if needed.
    
    		hv1 := temp(types.Types[types.TINT])
    		hn := temp(types.Types[types.TINT])
    
    		init = append(init, ir.Nod(ir.OAS, hv1, nil))
    		init = append(init, ir.Nod(ir.OAS, hn, ir.Nod(ir.OLEN, ha, nil)))
    
    		nfor.SetLeft(ir.Nod(ir.OLT, hv1, hn))
    		nfor.SetRight(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
    
    			break
    		}
    
    		// for v1 := range ha { body }
    		if v2 == nil {
    
    			body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
    
    		if cheapComputableIndex(nrange.Type().Elem().Width) {
    
    			tmp := ir.Nod(ir.OINDEX, ha, hv1)
    
    			tmp.SetBounded(true)
    			// Use OAS2 to correctly handle assignments
    			// of the form "v1, a[v1] := range".
    
    			a.PtrList().Set2(v1, v2)
    			a.PtrRlist().Set2(hv1, tmp)
    
    		// TODO(austin): OFORUNTIL is a strange beast, but is
    		// necessary for expressing the control flow we need
    		// while also making "break" and "continue" work. It
    		// would be nice to just lower ORANGE during SSA, but
    		// racewalk needs to see many of the operations
    		// involved in ORANGE's implementation. If racewalk
    		// moves into SSA, consider moving ORANGE into SSA and
    		// eliminating OFORUNTIL.
    
    		// TODO(austin): OFORUNTIL inhibits bounds-check
    		// elimination on the index variable (see #20711).
    		// Enhance the prove pass to understand this.
    
    		ifGuard = ir.Nod(ir.OIF, nil, nil)
    
    		ifGuard.SetLeft(ir.Nod(ir.OLT, hv1, hn))
    
    		hp := temp(types.NewPtr(nrange.Type().Elem()))
    
    		tmp := ir.Nod(ir.OINDEX, ha, nodintconst(0))
    
    		init = append(init, ir.Nod(ir.OAS, hp, nodAddr(tmp)))
    
    
    		// Use OAS2 to correctly handle assignments
    		// of the form "v1, a[v1] := range".
    
    		a.PtrList().Set2(v1, v2)
    		a.PtrRlist().Set2(hv1, ir.Nod(ir.ODEREF, hp, nil))
    
    		// Advance pointer as part of the late increment.
    		//
    		// This runs *after* the condition check, so we know
    		// advancing the pointer is safe and won't go past the
    		// end of the allocation.
    
    		as := ir.Nod(ir.OAS, hp, addptr(hp, t.Elem().Width))
    		nfor.PtrList().Set1(typecheck(as, ctxStmt))
    
    		// order.stmt allocated the iterator for us.
    
    		// we only use a once, so no copy needed.
    
    		keysym := th.Field(0).Sym  // depends on layout of iterator struct.  See reflect.go:hiter
    		elemsym := th.Field(1).Sym // ditto
    
    		fn := syslook("mapiterinit")
    
    		fn = substArgTypes(fn, t.Key(), t.Elem(), th)
    
    		init = append(init, mkcall1(fn, nil, nil, typename(t), ha, nodAddr(hit)))
    
    		nfor.SetLeft(ir.Nod(ir.ONE, nodSym(ir.ODOT, hit, keysym), nodnil()))
    
    		fn = syslook("mapiternext")
    
    		fn = substArgTypes(fn, th)
    
    		nfor.SetRight(mkcall1(fn, nil, nil, nodAddr(hit)))
    
    		key := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, keysym), nil)
    
    		if v1 == nil {
    			body = nil
    		} else if v2 == nil {
    
    			body = []ir.Node{ir.Nod(ir.OAS, v1, key)}
    
    			elem := ir.Nod(ir.ODEREF, nodSym(ir.ODOT, hit, elemsym), nil)
    
    			a.PtrList().Set2(v1, v2)
    			a.PtrRlist().Set2(key, elem)
    
    		// order.stmt arranged for a copy of the channel variable.
    
    		hv1 := temp(t.Elem())
    
    			init = append(init, ir.Nod(ir.OAS, hv1, nil))
    
    		hb := temp(types.Types[types.TBOOL])
    
    		nfor.SetLeft(ir.Nod(ir.ONE, hb, nodbool(false)))
    
    		a := ir.Nod(ir.OAS2RECV, nil, nil)
    
    		a.PtrRlist().Set1(ir.Nod(ir.ORECV, ha, nil))
    		nfor.Left().PtrInit().Set1(a)
    
    			body = []ir.Node{ir.Nod(ir.OAS, v1, hv1)}
    
    		// Zero hv1. This prevents hv1 from being the sole, inaccessible
    		// reference to an otherwise GC-able value during the next channel receive.
    		// See issue 15281.
    
    		body = append(body, ir.Nod(ir.OAS, hv1, nil))
    
    		// Transform string range statements like "for v1, v2 = range a" into
    		//
    		// ha := a
    		// for hv1 := 0; hv1 < len(ha); {
    
    		//   hv2 := rune(ha[hv1])
    		//   if hv2 < utf8.RuneSelf {
    		//      hv1++
    		//   } else {
    
    		//      hv2, hv1 = decoderune(ha, hv1)
    
    		// order.stmt arranged for a copy of the string variable.
    
    		hv1 := temp(types.Types[types.TINT])
    		hv1t := temp(types.Types[types.TINT])
    
    		hv2 := temp(types.RuneType)
    
    		init = append(init, ir.Nod(ir.OAS, hv1, nil))
    
    		nfor.SetLeft(ir.Nod(ir.OLT, hv1, ir.Nod(ir.OLEN, ha, nil)))
    
    			body = append(body, ir.Nod(ir.OAS, hv1t, hv1))
    
    		nind := ir.Nod(ir.OINDEX, ha, hv1)
    
    		body = append(body, ir.Nod(ir.OAS, hv2, conv(nind, types.RuneType)))
    
    		nif.SetLeft(ir.Nod(ir.OLT, hv2, nodintconst(utf8.RuneSelf)))
    
    		nif.PtrBody().Set1(ir.Nod(ir.OAS, hv1, ir.Nod(ir.OADD, hv1, nodintconst(1))))
    
    		eif := ir.Nod(ir.OAS2, nil, nil)
    
    		// hv2, hv1 = decoderune(ha, hv1)
    
    		eif.PtrList().Set2(hv2, hv1)
    
    		fn := syslook("decoderune")
    
    		eif.PtrRlist().Set1(mkcall1(fn, fn.Type().Results(), nil, ha, hv1))
    
    		if v1 != nil {
    			if v2 != nil {
    				// v1, v2 = hv1t, hv2
    
    				a.PtrList().Set2(v1, v2)
    				a.PtrRlist().Set2(hv1t, hv2)
    
    				body = append(body, a)
    			} else {
    				// v1 = hv1t
    
    				body = append(body, ir.Nod(ir.OAS, v1, hv1t))
    
    	typecheckslice(init, ctxStmt)
    
    		ifGuard.PtrInit().Append(init...)
    
    		ifGuard = typecheck(ifGuard, ctxStmt)
    
    		nfor.PtrInit().Append(init...)
    
    	typecheckslice(nfor.Left().Init().Slice(), ctxStmt)
    
    	nfor.SetLeft(typecheck(nfor.Left(), ctxExpr))
    	nfor.SetLeft(defaultlit(nfor.Left(), nil))
    	nfor.SetRight(typecheck(nfor.Right(), ctxStmt))
    
    	typecheckslice(body, ctxStmt)
    
    	nfor.PtrBody().Append(body...)
    	nfor.PtrBody().Append(nrange.Body().Slice()...)
    
    // isMapClear checks if n is of the form:
    //
    // for k := range m {
    //   delete(m, k)
    // }
    //
    // where == for keys of map m is reflexive.
    
    	if base.Flag.N != 0 || instrumenting {
    
    	if n.Op() != ir.ORANGE || n.Type().Kind() != types.TMAP || n.List().Len() != 1 {
    
    		return false
    	}
    
    	// Require k to be a new variable name.
    
    	stmt := n.Body().First() // only stmt in body
    	if stmt == nil || stmt.Op() != ir.ODELETE {
    
    	m := n.Right()
    	if !samesafeexpr(stmt.List().First(), m) || !samesafeexpr(stmt.List().Second(), k) {
    
    		return false
    	}
    
    	// Keys where equality is not reflexive can not be deleted from maps.
    
    	if !isreflexive(m.Type().Key()) {
    
    		return false
    	}
    
    	return true
    }
    
    // mapClear constructs a call to runtime.mapclear for the map m.
    
    
    	// instantiate mapclear(typ *type, hmap map[any]any)
    	fn := syslook("mapclear")
    	fn = substArgTypes(fn, t.Key(), t.Elem())
    	n := mkcall1(fn, nil, nil, typename(t), m)
    
    
    	n = typecheck(n, ctxStmt)
    
    // Lower n into runtime·memclr if possible, for
    // fast zeroing of slices and arrays (issue 5373).
    // Look for instances of
    //
    // for i := range a {
    // 	a[i] = zero
    // }
    //
    // in which the evaluation of a is side-effect-free.
    //
    // Parameters are as in walkrange: "for v1, v2 = range a".
    
    func arrayClear(loop, v1, v2, a ir.Node) ir.Node {
    
    	if base.Flag.N != 0 || instrumenting {
    
    	if loop.Body().Len() != 1 || loop.Body().First() == nil {
    		return nil
    
    	stmt := loop.Body().First() // only stmt in body
    
    	if stmt.Op() != ir.OAS || stmt.Left().Op() != ir.OINDEX {
    
    	if !samesafeexpr(stmt.Left().Left(), a) || !samesafeexpr(stmt.Left().Right(), v1) {
    
    	elemsize := loop.Type().Elem().Width
    
    	if elemsize <= 0 || !isZero(stmt.Right()) {
    
    	}
    
    	// Convert to
    	// if len(a) != 0 {
    	// 	hp = &a[0]
    	// 	hn = len(a)*sizeof(elem(a))
    
    	// 	memclr{NoHeap,Has}Pointers(hp, hn)
    
    	n.PtrBody().Set(nil)
    	n.SetLeft(ir.Nod(ir.ONE, ir.Nod(ir.OLEN, a, nil), nodintconst(0)))
    
    	hp := temp(types.Types[types.TUNSAFEPTR])
    
    	ix := ir.Nod(ir.OINDEX, a, nodintconst(0))
    	ix.SetBounded(true)
    	addr := convnop(nodAddr(ix), types.Types[types.TUNSAFEPTR])
    	n.PtrBody().Append(ir.Nod(ir.OAS, hp, addr))
    
    	hn := temp(types.Types[types.TUINTPTR])
    
    	mul := conv(ir.Nod(ir.OMUL, ir.Nod(ir.OLEN, a, nil), nodintconst(elemsize)), types.Types[types.TUINTPTR])
    	n.PtrBody().Append(ir.Nod(ir.OAS, hn, mul))
    
    	if a.Type().Elem().HasPointers() {
    
    		// memclrHasPointers(hp, hn)
    
    		Curfn.SetWBPos(stmt.Pos())
    
    		fn = mkcall("memclrHasPointers", nil, nil, hp, hn)
    	} else {
    		// memclrNoHeapPointers(hp, hn)
    		fn = mkcall("memclrNoHeapPointers", nil, nil, hp, hn)
    	}
    
    	v1 = ir.Nod(ir.OAS, v1, ir.Nod(ir.OSUB, ir.Nod(ir.OLEN, a, nil), nodintconst(1)))
    
    	n.SetLeft(typecheck(n.Left(), ctxExpr))
    	n.SetLeft(defaultlit(n.Left(), nil))
    	typecheckslice(n.Body().Slice(), ctxStmt)
    
    
    // addptr returns (*T)(uintptr(p) + n).
    
    func addptr(p ir.Node, n int64) ir.Node {
    
    	p.SetType(types.Types[types.TUINTPTR])
    
    	p = ir.Nod(ir.OADD, p, nodintconst(n))