Skip to content
Snippets Groups Projects
regexp.go 38.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2009 The Go Authors. All rights reserved.
    
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    
    Russ Cox's avatar
    Russ Cox committed
    // Package regexp implements regular expression search.
    
    // The syntax of the regular expressions accepted is the same
    // general syntax used by Perl, Python, and other languages.
    // More precisely, it is the syntax accepted by RE2 and described at
    
    // https://golang.org/s/re2syntax, except for \C.
    
    // For an overview of the syntax, see the [regexp/syntax] package.
    
    // The regexp implementation provided by this package is
    // guaranteed to run in time linear in the size of the input.
    // (This is a property not guaranteed by most open source
    // implementations of regular expressions.) For more information
    
    // about this property, see https://swtch.com/~rsc/regexp/regexp1.html
    
    // or any book about automata theory.
    //
    
    // All characters are UTF-8-encoded code points.
    
    // Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence
    
    // is treated as if it encoded utf8.RuneError (U+FFFD).
    
    // There are 16 methods of [Regexp] that match a regular expression and identify
    
    // the matched text. Their names are matched by this regular expression:
    
    //
    //	Find(All)?(String)?(Submatch)?(Index)?
    //
    // If 'All' is present, the routine matches successive non-overlapping
    
    // matches of the entire expression. Empty matches abutting a preceding
    // match are ignored. The return value is a slice containing the successive
    // return values of the corresponding non-'All' routine. These routines take
    
    // an extra integer argument, n. If n >= 0, the function returns at most n
    // matches/submatches; otherwise, it returns all of them.
    
    //
    // If 'String' is present, the argument is a string; otherwise it is a slice
    // of bytes; return values are adjusted as appropriate.
    //
    // If 'Submatch' is present, the return value is a slice identifying the
    
    // successive submatches of the expression. Submatches are matches of
    // parenthesized subexpressions (also known as capturing groups) within the
    // regular expression, numbered from left to right in order of opening
    
    // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
    
    // the match of the first parenthesized subexpression, and so on.
    
    //
    // If 'Index' is present, matches and submatches are identified by byte index
    
    // pairs within the input string: result[2*n:2*n+2] identifies the indexes of
    
    // the nth submatch. The pair for n==0 identifies the match of the entire
    
    // expression. If 'Index' is not present, the match is identified by the text
    // of the match/submatch. If an index is negative or text is nil, it means that
    // subexpression did not match any string in the input. For 'String' versions
    // an empty string means either no match or an empty match.
    
    // There is also a subset of the methods that can be applied to text read from
    // an [io.RuneReader]: [Regexp.MatchReader], [Regexp.FindReaderIndex],
    // [Regexp.FindReaderSubmatchIndex].
    
    // This set may grow. Note that regular expression matches may need to
    
    // examine text beyond the text returned by a match, so the methods that
    
    // match text from an [io.RuneReader] may read arbitrarily far into the input
    
    // (There are a few other methods that do not match this pattern.)
    
    package regexp
    
    
    Rob Pike's avatar
    Rob Pike committed
    import (
    
    	"regexp/syntax"
    	"strconv"
    
    Rob Pike's avatar
    Rob Pike committed
    )
    
    
    // Regexp is the representation of a compiled regular expression.
    
    // A Regexp is safe for concurrent use by multiple goroutines,
    
    // except for configuration methods, such as [Regexp.Longest].
    
    type Regexp struct {
    
    	expr           string       // as passed to Compile
    	prog           *syntax.Prog // compiled program
    	onepass        *onePassProg // onepass program or nil
    	numSubexp      int
    	maxBitStateLen int
    	subexpNames    []string
    
    	prefix         string         // required prefix in unanchored matches
    	prefixBytes    []byte         // prefix, as a []byte
    
    Russ Cox's avatar
    Russ Cox committed
    	prefixRune     rune           // first rune in prefix
    
    	prefixEnd      uint32         // pc for last rune in prefix
    
    	mpool          int            // pool for machines
    	matchcap       int            // size of recorded match lengths
    
    	prefixComplete bool           // prefix is the entire regexp
    
    	cond           syntax.EmptyOp // empty-width conditions required at start of match
    
    	minInputLen    int            // minimum length of the input in bytes
    
    
    	// This field can be modified by the Longest method,
    	// but it is otherwise read-only.
    	longest bool // whether regexp prefers leftmost-longest match
    
    // String returns the source text used to compile the regular expression.
    func (re *Regexp) String() string {
    
    // Copy returns a new [Regexp] object copied from re.
    // Calling [Regexp.Longest] on one copy does not affect another.
    
    // Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines,
    
    // giving each goroutine its own copy helped to avoid lock contention.
    // As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
    // Copy may still be appropriate if the reason for its use is to make
    
    // two copies with different [Regexp.Longest] settings.
    
    func (re *Regexp) Copy() *Regexp {
    
    	re2 := *re
    	return &re2
    
    // Compile parses a regular expression and returns, if successful,
    
    // a [Regexp] object that can be used to match against text.
    
    //
    // When matching against text, the regexp returns a match that
    // begins as early as possible in the input (leftmost), and among those
    // it chooses the one that a backtracking search would have found first.
    // This so-called leftmost-first matching is the same semantics
    // that Perl, Python, and other implementations use, although this
    // package implements it without the expense of backtracking.
    
    // For POSIX leftmost-longest matching, see [CompilePOSIX].
    
    func Compile(expr string) (*Regexp, error) {
    
    	return compile(expr, syntax.Perl, false)
    }
    
    
    // CompilePOSIX is like [Compile] but restricts the regular expression
    
    // to POSIX ERE (egrep) syntax and changes the match semantics to
    // leftmost-longest.
    //
    // That is, when matching against text, the regexp returns a match that
    // begins as early as possible in the input (leftmost), and among those
    // it chooses a match that is as long as possible.
    // This so-called leftmost-longest matching is the same semantics
    // that early regular expression implementations used and that POSIX
    // specifies.
    //
    // However, there can be multiple leftmost-longest matches, with different
    // submatch choices, and here this package diverges from POSIX.
    // Among the possible leftmost-longest matches, this package chooses
    // the one that a backtracking search would have found first, while POSIX
    // specifies that the match be chosen to maximize the length of the first
    // subexpression, then the second, and so on from left to right.
    // The POSIX rule is computationally prohibitive and not even well-defined.
    
    // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
    
    func CompilePOSIX(expr string) (*Regexp, error) {
    
    	return compile(expr, syntax.POSIX, true)
    }
    
    
    // Longest makes future searches prefer the leftmost-longest match.
    
    // That is, when matching against text, the regexp returns a match that
    // begins as early as possible in the input (leftmost), and among those
    // it chooses a match that is as long as possible.
    
    // This method modifies the [Regexp] and may not be called concurrently
    
    func (re *Regexp) Longest() {
    	re.longest = true
    }
    
    
    func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
    
    	re, err := syntax.Parse(expr, mode)
    	if err != nil {
    		return nil, err
    	}
    	maxCap := re.MaxCap()
    
    Russ Cox's avatar
    Russ Cox committed
    	capNames := re.CapNames()
    
    
    	re = re.Simplify()
    	prog, err := syntax.Compile(re)
    	if err != nil {
    		return nil, err
    	}
    
    	matchcap := prog.NumCap
    	if matchcap < 2 {
    		matchcap = 2
    	}
    
    	regexp := &Regexp{
    
    		expr:        expr,
    		prog:        prog,
    		onepass:     compileOnePass(prog),
    		numSubexp:   maxCap,
    		subexpNames: capNames,
    		cond:        prog.StartCond(),
    		longest:     longest,
    		matchcap:    matchcap,
    
    		minInputLen: minInputLen(re),
    
    	if regexp.onepass == nil {
    
    		regexp.prefix, regexp.prefixComplete = prog.Prefix()
    
    		regexp.maxBitStateLen = maxBitStateLen(prog)
    
    		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
    
    	if regexp.prefix != "" {
    		// TODO(rsc): Remove this allocation by adding
    		// IndexString to package bytes.
    		regexp.prefixBytes = []byte(regexp.prefix)
    		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
    	}
    
    
    	n := len(prog.Inst)
    	i := 0
    	for matchSize[i] != 0 && matchSize[i] < n {
    		i++
    	}
    	regexp.mpool = i
    
    
    // Pools of *machine for use during (*Regexp).doExecute,
    // split up by the size of the execution queues.
    // matchPool[i] machines have queue size matchSize[i].
    // On a 64-bit system each queue entry is 16 bytes,
    // so matchPool[0] has 16*2*128 = 4kB queues, etc.
    // The final matchPool is a catch-all for very large queues.
    var (
    	matchSize = [...]int{128, 512, 2048, 16384, 0}
    	matchPool [len(matchSize)]sync.Pool
    )
    
    
    // get returns a machine to use for matching re.
    // It uses the re's machine cache if possible, to avoid
    // unnecessary allocation.
    func (re *Regexp) get() *machine {
    
    	m, ok := matchPool[re.mpool].Get().(*machine)
    	if !ok {
    		m = new(machine)
    	}
    	m.re = re
    	m.p = re.prog
    	if cap(m.matchcap) < re.matchcap {
    		m.matchcap = make([]int, re.matchcap)
    		for _, t := range m.pool {
    			t.cap = make([]int, re.matchcap)
    		}
    
    	// Allocate queues if needed.
    	// Or reallocate, for "large" match pool.
    	n := matchSize[re.mpool]
    	if n == 0 { // large pool
    		n = len(re.prog.Inst)
    	}
    	if len(m.q0.sparse) < n {
    		m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
    		m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
    	}
    	return m
    }
    
    // put returns a machine to the correct machine pool.
    func (re *Regexp) put(m *machine) {
    	m.re = nil
    	m.p = nil
    	m.inputs.clear()
    	matchPool[re.mpool].Put(m)
    
    // minInputLen walks the regexp to find the minimum length of any matchable input.
    
    func minInputLen(re *syntax.Regexp) int {
    	switch re.Op {
    	default:
    		return 0
    	case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
    		return 1
    	case syntax.OpLiteral:
    		l := 0
    		for _, r := range re.Rune {
    
    			if r == utf8.RuneError {
    				l++
    			} else {
    				l += utf8.RuneLen(r)
    			}
    
    		}
    		return l
    	case syntax.OpCapture, syntax.OpPlus:
    		return minInputLen(re.Sub[0])
    	case syntax.OpRepeat:
    		return re.Min * minInputLen(re.Sub[0])
    	case syntax.OpConcat:
    		l := 0
    		for _, sub := range re.Sub {
    			l += minInputLen(sub)
    		}
    		return l
    	case syntax.OpAlternate:
    		l := minInputLen(re.Sub[0])
    		var lnext int
    		for _, sub := range re.Sub[1:] {
    			lnext = minInputLen(sub)
    			if lnext < l {
    				l = lnext
    			}
    		}
    		return l
    	}
    }
    
    
    // MustCompile is like [Compile] but panics if the expression cannot be parsed.
    
    // It simplifies safe initialization of global variables holding compiled regular
    // expressions.
    func MustCompile(str string) *Regexp {
    
    	regexp, err := Compile(str)
    	if err != nil {
    		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
    
    Rob Pike's avatar
    Rob Pike committed
    
    
    // MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed.
    
    // It simplifies safe initialization of global variables holding compiled regular
    // expressions.
    func MustCompilePOSIX(str string) *Regexp {
    
    	regexp, err := CompilePOSIX(str)
    	if err != nil {
    		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
    
    func quote(s string) string {
    	if strconv.CanBackquote(s) {
    		return "`" + s + "`"
    
    	return strconv.Quote(s)
    
    // NumSubexp returns the number of parenthesized subexpressions in this [Regexp].
    
    func (re *Regexp) NumSubexp() int {
    	return re.numSubexp
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    
    Russ Cox's avatar
    Russ Cox committed
    // SubexpNames returns the names of the parenthesized subexpressions
    
    // in this [Regexp]. The name for the first sub-expression is names[1],
    
    Russ Cox's avatar
    Russ Cox committed
    // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
    // Since the Regexp as a whole cannot be named, names[0] is always
    
    // the empty string. The slice should not be modified.
    
    Russ Cox's avatar
    Russ Cox committed
    func (re *Regexp) SubexpNames() []string {
    	return re.subexpNames
    }
    
    
    // SubexpIndex returns the index of the first subexpression with the given name,
    // or -1 if there is no subexpression with that name.
    //
    // Note that multiple subexpressions can be written using the same name, as in
    // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
    // In this case, SubexpIndex returns the index of the leftmost such subexpression
    // in the regular expression.
    func (re *Regexp) SubexpIndex(name string) int {
    	if name != "" {
    		for i, s := range re.subexpNames {
    			if name == s {
    				return i
    			}
    		}
    	}
    	return -1
    }
    
    
    Russ Cox's avatar
    Russ Cox committed
    const endOfText rune = -1
    
    Rob Pike's avatar
    Rob Pike committed
    
    
    // input abstracts different representations of the input text. It provides
    // one-character lookahead.
    type input interface {
    
    Russ Cox's avatar
    Russ Cox committed
    	step(pos int) (r rune, width int) // advance one rune
    	canCheckPrefix() bool             // can we look ahead without losing info?
    
    	hasPrefix(re *Regexp) bool
    	index(re *Regexp, pos int) int
    
    	context(pos int) lazyFlag
    
    }
    
    // inputString scans a string.
    type inputString struct {
    	str string
    }
    
    
    Russ Cox's avatar
    Russ Cox committed
    func (i *inputString) step(pos int) (rune, int) {
    
    Russ Cox's avatar
    Russ Cox committed
    		c := i.str[pos]
    		if c < utf8.RuneSelf {
    
    Russ Cox's avatar
    Russ Cox committed
    			return rune(c), 1
    
    Russ Cox's avatar
    Russ Cox committed
    		}
    		return utf8.DecodeRuneInString(i.str[pos:])
    
    	}
    	return endOfText, 0
    }
    
    func (i *inputString) canCheckPrefix() bool {
    	return true
    }
    
    func (i *inputString) hasPrefix(re *Regexp) bool {
    	return strings.HasPrefix(i.str, re.prefix)
    }
    
    func (i *inputString) index(re *Regexp, pos int) int {
    	return strings.Index(i.str[pos:], re.prefix)
    }
    
    
    func (i *inputString) context(pos int) lazyFlag {
    
    Russ Cox's avatar
    Russ Cox committed
    	r1, r2 := endOfText, endOfText
    
    	// 0 < pos && pos <= len(i.str)
    	if uint(pos-1) < uint(len(i.str)) {
    		r1 = rune(i.str[pos-1])
    		if r1 >= utf8.RuneSelf {
    			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
    		}
    
    	// 0 <= pos && pos < len(i.str)
    	if uint(pos) < uint(len(i.str)) {
    		r2 = rune(i.str[pos])
    		if r2 >= utf8.RuneSelf {
    			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
    		}
    
    	return newLazyFlag(r1, r2)
    
    // inputBytes scans a byte slice.
    type inputBytes struct {
    	str []byte
    }
    
    
    Russ Cox's avatar
    Russ Cox committed
    func (i *inputBytes) step(pos int) (rune, int) {
    
    Russ Cox's avatar
    Russ Cox committed
    		c := i.str[pos]
    		if c < utf8.RuneSelf {
    
    Russ Cox's avatar
    Russ Cox committed
    			return rune(c), 1
    
    Russ Cox's avatar
    Russ Cox committed
    		}
    		return utf8.DecodeRune(i.str[pos:])
    
    	}
    	return endOfText, 0
    }
    
    func (i *inputBytes) canCheckPrefix() bool {
    	return true
    }
    
    func (i *inputBytes) hasPrefix(re *Regexp) bool {
    	return bytes.HasPrefix(i.str, re.prefixBytes)
    }
    
    func (i *inputBytes) index(re *Regexp, pos int) int {
    	return bytes.Index(i.str[pos:], re.prefixBytes)
    }
    
    
    func (i *inputBytes) context(pos int) lazyFlag {
    
    Russ Cox's avatar
    Russ Cox committed
    	r1, r2 := endOfText, endOfText
    
    	// 0 < pos && pos <= len(i.str)
    	if uint(pos-1) < uint(len(i.str)) {
    		r1 = rune(i.str[pos-1])
    		if r1 >= utf8.RuneSelf {
    			r1, _ = utf8.DecodeLastRune(i.str[:pos])
    		}
    
    	// 0 <= pos && pos < len(i.str)
    	if uint(pos) < uint(len(i.str)) {
    		r2 = rune(i.str[pos])
    		if r2 >= utf8.RuneSelf {
    			r2, _ = utf8.DecodeRune(i.str[pos:])
    		}
    
    	return newLazyFlag(r1, r2)
    
    // inputReader scans a RuneReader.
    type inputReader struct {
    	r     io.RuneReader
    	atEOT bool
    	pos   int
    }
    
    
    Russ Cox's avatar
    Russ Cox committed
    func (i *inputReader) step(pos int) (rune, int) {
    
    	if !i.atEOT && pos != i.pos {
    		return endOfText, 0
    
    	}
    	r, w, err := i.r.ReadRune()
    	if err != nil {
    		i.atEOT = true
    		return endOfText, 0
    	}
    	i.pos += w
    	return r, w
    }
    
    func (i *inputReader) canCheckPrefix() bool {
    	return false
    }
    
    func (i *inputReader) hasPrefix(re *Regexp) bool {
    	return false
    }
    
    func (i *inputReader) index(re *Regexp, pos int) int {
    	return -1
    }
    
    
    func (i *inputReader) context(pos int) lazyFlag {
    	return 0 // not used
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    
    // LiteralPrefix returns a literal string that must begin any match
    
    // of the regular expression re. It returns the boolean true if the
    
    // literal string comprises the entire regular expression.
    func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
    
    	return re.prefix, re.prefixComplete
    
    // MatchReader reports whether the text returned by the [io.RuneReader]
    
    // contains any match of the regular expression re.
    
    func (re *Regexp) MatchReader(r io.RuneReader) bool {
    
    // MatchString reports whether the string s
    // contains any match of the regular expression re.
    
    func (re *Regexp) MatchString(s string) bool {
    
    // Match reports whether the byte slice b
    // contains any match of the regular expression re.
    
    func (re *Regexp) Match(b []byte) bool {
    
    // MatchReader reports whether the text returned by the [io.RuneReader]
    
    // contains any match of the regular expression pattern.
    
    // More complicated queries need to use [Compile] and the full [Regexp] interface.
    
    Brad Fitzpatrick's avatar
    Brad Fitzpatrick committed
    func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
    
    	re, err := Compile(pattern)
    	if err != nil {
    		return false, err
    	}
    	return re.MatchReader(r), nil
    }
    
    // MatchString reports whether the string s
    // contains any match of the regular expression pattern.
    
    // More complicated queries need to use [Compile] and the full [Regexp] interface.
    
    Brad Fitzpatrick's avatar
    Brad Fitzpatrick committed
    func MatchString(pattern string, s string) (matched bool, err error) {
    
    	re, err := Compile(pattern)
    
    	return re.MatchString(s), nil
    
    // Match reports whether the byte slice b
    
    // contains any match of the regular expression pattern.
    
    // More complicated queries need to use [Compile] and the full [Regexp] interface.
    
    Brad Fitzpatrick's avatar
    Brad Fitzpatrick committed
    func Match(pattern string, b []byte) (matched bool, err error) {
    
    	re, err := Compile(pattern)
    
    	return re.Match(b), nil
    
    // ReplaceAllString returns a copy of src, replacing matches of the [Regexp]
    
    // Inside repl, $ signs are interpreted as in [Regexp.Expand].
    
    func (re *Regexp) ReplaceAllString(src, repl string) string {
    
    		n = 2 * (re.numSubexp + 1)
    	}
    	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
    		return re.expand(dst, repl, nil, src, match)
    	})
    	return string(b)
    }
    
    
    // ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp]
    
    // with the replacement string repl. The replacement repl is substituted directly,
    
    // without using [Regexp.Expand].
    
    func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
    	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
    		return append(dst, repl...)
    	}))
    
    // ReplaceAllStringFunc returns a copy of src in which all matches of the
    
    // [Regexp] have been replaced by the return value of function repl applied
    
    // to the matched substring. The replacement returned by repl is substituted
    
    // directly, without using [Regexp.Expand].
    
    func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
    
    	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
    		return append(dst, repl(src[match[0]:match[1]])...)
    	})
    	return string(b)
    }
    
    func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
    
    	lastMatchEnd := 0 // end position of the most recent match
    	searchPos := 0    // position where we next look for a match
    
    	var buf []byte
    	var endPos int
    	if bsrc != nil {
    		endPos = len(bsrc)
    	} else {
    		endPos = len(src)
    	}
    
    	if nmatch > re.prog.NumCap {
    		nmatch = re.prog.NumCap
    	}
    
    
    	for searchPos <= endPos {
    
    		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
    
    		if len(a) == 0 {
    
    			break // no more matches
    
    		}
    
    		// Copy the unmatched characters before this match.
    
    		if bsrc != nil {
    			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
    		} else {
    			buf = append(buf, src[lastMatchEnd:a[0]]...)
    		}
    
    
    		// Now insert a copy of the replacement string, but not for a
    		// match of the empty string immediately after another match.
    		// (Otherwise, we get double replacement for patterns that
    		// match both empty and nonempty strings.)
    		if a[1] > lastMatchEnd || a[0] == 0 {
    
    		lastMatchEnd = a[1]
    
    
    		// Advance past this match; always advance at least one character.
    
    		var width int
    		if bsrc != nil {
    			_, width = utf8.DecodeRune(bsrc[searchPos:])
    		} else {
    			_, width = utf8.DecodeRuneInString(src[searchPos:])
    		}
    
    		if searchPos+width > a[1] {
    
    		} else if searchPos+1 > a[1] {
    
    			// This clause is only needed at the end of the input
    
    			// string. In that case, DecodeRuneInString returns width=0.
    
    		}
    	}
    
    	// Copy the unmatched characters after the last match.
    
    	if bsrc != nil {
    		buf = append(buf, bsrc[lastMatchEnd:]...)
    	} else {
    		buf = append(buf, src[lastMatchEnd:]...)
    	}
    
    // ReplaceAll returns a copy of src, replacing matches of the [Regexp]
    
    // Inside repl, $ signs are interpreted as in [Regexp.Expand].
    
    func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
    
    	n := 2
    	if bytes.IndexByte(repl, '$') >= 0 {
    		n = 2 * (re.numSubexp + 1)
    	}
    	srepl := ""
    	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
    		if len(srepl) != len(repl) {
    			srepl = string(repl)
    
    		return re.expand(dst, srepl, src, "", match)
    	})
    	return b
    }
    
    // ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp]
    
    // with the replacement bytes repl. The replacement repl is substituted directly,
    
    // without using [Regexp.Expand].
    
    func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
    	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
    		return append(dst, repl...)
    	})
    }
    
    // ReplaceAllFunc returns a copy of src in which all matches of the
    
    // [Regexp] have been replaced by the return value of function repl applied
    
    // to the matched byte slice. The replacement returned by repl is substituted
    
    // directly, without using [Regexp.Expand].
    
    func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
    	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
    		return append(dst, repl(src[match[0]:match[1]])...)
    	})
    
    // Bitmap used by func special to check whether a character needs to be escaped.
    var specialBytes [16]byte
    
    // special reports whether byte b needs to be escaped by QuoteMeta.
    
    func special(b byte) bool {
    
    	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
    }
    
    func init() {
    	for _, b := range []byte(`\.+*?()|[]{}^$`) {
    		specialBytes[b%16] |= 1 << (b / 16)
    	}
    
    // QuoteMeta returns a string that escapes all regular expression metacharacters
    
    // inside the argument text; the returned string is a regular expression matching
    
    // the literal text.
    
    func QuoteMeta(s string) string {
    	// A byte loop is correct because all metacharacters are ASCII.
    
    	var i int
    	for i = 0; i < len(s); i++ {
    		if special(s[i]) {
    			break
    		}
    	}
    	// No meta characters found, so return original string.
    	if i >= len(s) {
    		return s
    	}
    
    	b := make([]byte, 2*len(s)-i)
    	copy(b, s[:i])
    	j := i
    	for ; i < len(s); i++ {
    
    		if special(s[i]) {
    
    	return string(b[:j])
    
    // The number of capture values in the program may correspond
    // to fewer capturing expressions than are in the regexp.
    // For example, "(a){0}" turns into an empty program, so the
    // maximum capture in the program is 0 but we need to return
    // an expression for \1.  Pad appends -1s to the slice a as needed.
    func (re *Regexp) pad(a []int) []int {
    	if a == nil {
    		// No match.
    		return nil
    	}
    	n := (1 + re.numSubexp) * 2
    	for len(a) < n {
    		a = append(a, -1)
    	}
    	return a
    }
    
    
    // allMatches calls deliver at most n times
    // with the location of successive matches in the input text.
    // The input text is b if non-nil, otherwise s.
    
    func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
    
    	}
    
    	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
    
    		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
    
    		if matches[1] == pos {
    			// We've found an empty match.
    			if matches[0] == prevMatchEnd {
    				// We don't allow an empty match right
    				// after a previous match, so ignore it.
    
    				is := inputString{str: s}
    				_, width = is.step(pos)
    
    				ib := inputBytes{str: b}
    				_, width = ib.step(pos)
    
    		prevMatchEnd = matches[1]
    
    			deliver(re.pad(matches))
    
    // Find returns a slice holding the text of the leftmost match in b of the regular expression.
    // A return value of nil indicates no match.
    func (re *Regexp) Find(b []byte) []byte {
    
    	var dstCap [2]int
    	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
    
    	if a == nil {
    		return nil
    	}
    
    }
    
    // FindIndex returns a two-element slice of integers defining the location of
    
    // the leftmost match in b of the regular expression. The match itself is at
    
    // b[loc[0]:loc[1]].
    // A return value of nil indicates no match.
    func (re *Regexp) FindIndex(b []byte) (loc []int) {
    
    	a := re.doExecute(nil, b, "", 0, 2, nil)
    
    	if a == nil {
    		return nil
    	}
    	return a[0:2]
    }
    
    // FindString returns a string holding the text of the leftmost match in s of the regular
    
    // expression. If there is no match, the return value is an empty string,
    
    // but it will also be empty if the regular expression successfully matches
    
    // an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is
    
    // necessary to distinguish these cases.
    func (re *Regexp) FindString(s string) string {
    
    	var dstCap [2]int
    	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
    
    	if a == nil {
    		return ""
    	}
    	return s[a[0]:a[1]]
    }
    
    // FindStringIndex returns a two-element slice of integers defining the
    
    // location of the leftmost match in s of the regular expression. The match
    
    // itself is at s[loc[0]:loc[1]].
    // A return value of nil indicates no match.
    
    func (re *Regexp) FindStringIndex(s string) (loc []int) {
    
    	a := re.doExecute(nil, nil, s, 0, 2, nil)
    
    	if a == nil {
    		return nil
    	}
    	return a[0:2]
    }
    
    // FindReaderIndex returns a two-element slice of integers defining the
    // location of the leftmost match of the regular expression in text read from
    
    // the [io.RuneReader]. The match text was found in the input stream at
    
    // byte offset loc[0] through loc[1]-1.
    // A return value of nil indicates no match.
    
    func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
    
    	a := re.doExecute(r, nil, "", 0, 2, nil)
    
    	if a == nil {
    		return nil
    	}
    	return a[0:2]
    }
    
    // FindSubmatch returns a slice of slices holding the text of the leftmost
    // match of the regular expression in b and the matches, if any, of its
    // subexpressions, as defined by the 'Submatch' descriptions in the package
    // comment.
    // A return value of nil indicates no match.
    func (re *Regexp) FindSubmatch(b []byte) [][]byte {
    
    	var dstCap [4]int
    	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
    
    	if a == nil {
    		return nil
    	}
    
    	ret := make([][]byte, 1+re.numSubexp)
    
    	for i := range ret {
    
    		if 2*i < len(a) && a[2*i] >= 0 {
    
    			ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
    
    // Expand appends template to dst and returns the result; during the
    // append, Expand replaces variables in the template with corresponding
    
    // matches drawn from src. The match slice should have been returned by
    
    // [Regexp.FindSubmatchIndex].
    
    // In the template, a variable is denoted by a substring of the form
    // $name or ${name}, where name is a non-empty sequence of letters,
    
    // digits, and underscores. A purely numeric name like $1 refers to
    
    // the submatch with the corresponding index; other names refer to
    
    // capturing parentheses named with the (?P<name>...) syntax. A
    
    // reference to an out of range or unmatched index or a name that is not
    
    // present in the regular expression is replaced with an empty slice.
    
    // In the $name form, name is taken to be as long as possible: $1x is
    // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
    
    // To insert a literal $ in the output, use $$ in the template.
    func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
    	return re.expand(dst, string(template), src, "", match)
    }
    
    
    // ExpandString is like [Regexp.Expand] but the template and source are strings.
    
    // It appends to and returns a byte slice in order to give the calling
    
    Russ Cox's avatar
    Russ Cox committed
    // code control over allocation.
    
    func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
    	return re.expand(dst, template, nil, src, match)
    }
    
    func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
    	for len(template) > 0 {
    
    		before, after, ok := strings.Cut(template, "$")
    		if !ok {
    
    		dst = append(dst, before...)
    		template = after
    		if template != "" && template[0] == '$' {
    
    			// Treat $$ as $.
    			dst = append(dst, '$')
    
    			template = template[1:]
    
    			continue
    		}
    		name, num, rest, ok := extract(template)
    		if !ok {
    			// Malformed; treat $ as raw text.
    			dst = append(dst, '$')
    			continue
    		}
    		template = rest
    		if num >= 0 {
    
    			if 2*num+1 < len(match) && match[2*num] >= 0 {
    
    				if bsrc != nil {
    					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
    				} else {
    					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
    				}
    			}
    		} else {
    			for i, namei := range re.subexpNames {
    				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
    					if bsrc != nil {
    						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
    					} else {
    						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
    					}
    					break
    				}
    			}
    		}
    	}
    	dst = append(dst, template...)
    	return dst
    }
    
    
    // extract returns the name from a leading "name" or "{name}" in str.
    // (The $ has already been removed by the caller.)
    
    // If it is a number, extract returns num set to that number; otherwise num = -1.
    func extract(str string) (name string, num int, rest string, ok bool) {
    
    	if str == "" {
    
    	if str[0] == '{' {
    
    		brace = true
    		str = str[1:]
    	}
    	i := 0
    	for i < len(str) {
    		rune, size := utf8.DecodeRuneInString(str[i:])
    		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
    			break
    		}
    		i += size
    	}
    	if i == 0 {
    		// empty name is not okay
    		return
    	}
    	name = str[:i]
    	if brace {
    		if i >= len(str) || str[i] != '}' {
    			// missing closing brace
    			return