Skip to content
Snippets Groups Projects
regexp.go 26.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2009 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    
    // Package regexp implements a simple regular expression library.
    //
    // The syntax of the regular expressions accepted is:
    //
    //	regexp:
    //		concatenation { '|' concatenation }
    //	concatenation:
    //		{ closure }
    //	closure:
    //		term [ '*' | '+' | '?' ]
    //	term:
    //		'^'
    //		'$'
    //		'.'
    //		character
    //		'[' [ '^' ] character-ranges ']'
    //		'(' regexp ')'
    //
    
    package regexp
    
    
    Rob Pike's avatar
    Rob Pike committed
    import (
    
    	"bytes";
    
    	"container/vector";
    
    Russ Cox's avatar
    Russ Cox committed
    	"os";
    	"utf8";
    
    Rob Pike's avatar
    Rob Pike committed
    )
    
    
    var debug = false
    
    Rob Pike's avatar
    Rob Pike committed
    
    
    Rob Pike's avatar
    Rob Pike committed
    // Error codes returned by failures to parse an expression.
    
    Russ Cox's avatar
    Russ Cox committed
    var (
    
    	ErrInternal		= os.NewError("internal error");
    	ErrUnmatchedLpar	= os.NewError("unmatched '('");
    	ErrUnmatchedRpar	= os.NewError("unmatched ')'");
    	ErrUnmatchedLbkt	= os.NewError("unmatched '['");
    	ErrUnmatchedRbkt	= os.NewError("unmatched ']'");
    	ErrBadRange		= os.NewError("bad range in character class");
    	ErrExtraneousBackslash	= os.NewError("extraneous backslash");
    	ErrBadClosure		= os.NewError("repeated closure (**, ++, etc.)");
    	ErrBareClosure		= os.NewError("closure applies to nothing");
    	ErrBadBackslash		= os.NewError("illegal backslash escape");
    
    Russ Cox's avatar
    Russ Cox committed
    )
    
    
    // An instruction executed by the NFA
    
    Rob Pike's avatar
    Rob Pike committed
    type instr interface {
    
    	kind() int;	// the type of this instruction: _CHAR, _ANY, etc.
    	next() instr;	// the instruction to execute after this one
    
    	setNext(i instr);
    
    	index() int;
    
    	setIndex(i int);
    	print();
    
    // Fields and methods common to all instructions
    
    Rob Pike's avatar
    Rob Pike committed
    type common struct {
    
    	_next	instr;
    	_index	int;
    
    func (c *common) next() instr		{ return c._next }
    func (c *common) setNext(i instr)	{ c._next = i }
    func (c *common) index() int		{ return c._index }
    func (c *common) setIndex(i int)	{ c._index = i }
    
    // Regexp is the representation of a compiled regular expression.
    
    // The public interface is entirely through methods.
    type Regexp struct {
    
    	expr	string;	// the original expression
    
    Rob Pike's avatar
    Rob Pike committed
    	inst	*vector.Vector;
    
    Rob Pike's avatar
    Rob Pike committed
    	start	instr;
    
    Rob Pike's avatar
    Rob Pike committed
    	nbra	int;	// number of brackets in expression, for subexpressions
    
    	_START		= iota;	// beginning of program
    
    	_END;		// end of program: success
    	_BOT;		// '^' beginning of text
    	_EOT;		// '$' end of text
    
    	_CHAR;		// 'a' regular character
    
    	_CHARCLASS;	// [a-z] character class
    
    	_ANY;		// '.' any character including newline
    	_NOTNL;		// [^\n] special case: any character but newline
    
    	_BRA;		// '(' parenthesized expression
    
    	_EBRA;		// ')'; end of '(' parenthesized expression
    
    	_ALT;		// '|' alternation
    	_NOP;		// do nothing; makes it easy to link without patching
    
    )
    
    // --- START start of program
    
    	common;
    
    func (start *_Start) kind() int	{ return _START }
    func (start *_Start) print()	{ print("start") }
    
    
    // --- END end of program
    
    	common;
    
    func (end *_End) kind() int	{ return _END }
    func (end *_End) print()	{ print("end") }
    
    
    // --- BOT beginning of text
    
    	common;
    
    func (bot *_Bot) kind() int	{ return _BOT }
    func (bot *_Bot) print()	{ print("bot") }
    
    
    // --- EOT end of text
    
    	common;
    
    func (eot *_Eot) kind() int	{ return _EOT }
    func (eot *_Eot) print()	{ print("eot") }
    
    
    // --- CHAR a regular character
    
    Rob Pike's avatar
    Rob Pike committed
    	common;
    
    Rob Pike's avatar
    Rob Pike committed
    	char	int;
    
    func (char *_Char) kind() int	{ return _CHAR }
    func (char *_Char) print()	{ print("char ", string(char.char)) }
    
    func newChar(char int) *_Char {
    	c := new(_Char);
    
    	c.char = char;
    	return c;
    }
    
    
    Rob Pike's avatar
    Rob Pike committed
    // --- CHARCLASS [a-z]
    
    
    Rob Pike's avatar
    Rob Pike committed
    	common;
    
    Rob Pike's avatar
    Rob Pike committed
    	char	int;
    	negate	bool;	// is character class negated? ([^a-z])
    
    Rob Pike's avatar
    Rob Pike committed
    	// vector of int, stored pairwise: [a-z] is (a,z); x is (x,x):
    	ranges	*vector.IntVector;
    
    func (cclass *_CharClass) kind() int	{ return _CHARCLASS }
    
    func (cclass *_CharClass) print() {
    
    Rob Pike's avatar
    Rob Pike committed
    	print("charclass");
    	if cclass.negate {
    
    Rob Pike's avatar
    Rob Pike committed
    	}
    	for i := 0; i < cclass.ranges.Len(); i += 2 {
    
    		r := cclass.ranges.At(i + 1);
    
    Rob Pike's avatar
    Rob Pike committed
    		if l == r {
    
    Rob Pike's avatar
    Rob Pike committed
    		} else {
    
    			print(" [", string(l), "-", string(r), "]")
    
    func (cclass *_CharClass) addRange(a, b int) {
    
    Rob Pike's avatar
    Rob Pike committed
    	// range is a through b inclusive
    
    	cclass.ranges.Push(a);
    	cclass.ranges.Push(b);
    
    func (cclass *_CharClass) matches(c int) bool {
    
    	for i := 0; i < cclass.ranges.Len(); i = i + 2 {
    
    		min := cclass.ranges.At(i);
    
    		max := cclass.ranges.At(i + 1);
    
    Rob Pike's avatar
    Rob Pike committed
    		if min <= c && c <= max {
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    	}
    
    	return cclass.negate;
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    
    func newCharClass() *_CharClass {
    	c := new(_CharClass);
    
    Rob Pike's avatar
    Rob Pike committed
    	c.ranges = vector.NewIntVector(0);
    
    Rob Pike's avatar
    Rob Pike committed
    	return c;
    }
    
    
    // --- ANY any character
    
    	common;
    
    func (any *_Any) kind() int	{ return _ANY }
    func (any *_Any) print()	{ print("any") }
    
    // --- NOTNL any character but newline
    type _NotNl struct {
    
    	common;
    
    func (notnl *_NotNl) kind() int	{ return _NOTNL }
    func (notnl *_NotNl) print()	{ print("notnl") }
    
    // --- BRA parenthesized expression
    
    Rob Pike's avatar
    Rob Pike committed
    	common;
    
    	n	int;	// subexpression number
    
    func (bra *_Bra) kind() int	{ return _BRA }
    func (bra *_Bra) print()	{ print("bra", bra.n) }
    
    
    // --- EBRA end of parenthesized expression
    
    Rob Pike's avatar
    Rob Pike committed
    	common;
    
    	n	int;	// subexpression number
    }
    
    
    func (ebra *_Ebra) kind() int	{ return _EBRA }
    func (ebra *_Ebra) print()	{ print("ebra ", ebra.n) }
    
    
    // --- ALT alternation
    
    Rob Pike's avatar
    Rob Pike committed
    	common;
    
    Rob Pike's avatar
    Rob Pike committed
    	left	instr;	// other branch
    
    func (alt *_Alt) kind() int	{ return _ALT }
    func (alt *_Alt) print()	{ print("alt(", alt.left.index(), ")") }
    
    
    // --- NOP no operation
    
    	common;
    
    func (nop *_Nop) kind() int	{ return _NOP }
    func (nop *_Nop) print()	{ print("nop") }
    
    func (re *Regexp) add(i instr) instr {
    	i.setIndex(re.inst.Len());
    
    Rob Pike's avatar
    Rob Pike committed
    	return i;
    }
    
    
    Rob Pike's avatar
    Rob Pike committed
    type parser struct {
    
    	re	*Regexp;
    
    	nlpar	int;	// number of unclosed lpars
    
    Rob Pike's avatar
    Rob Pike committed
    const endOfFile = -1
    
    func (p *parser) c() int	{ return p.ch }
    
    Rob Pike's avatar
    Rob Pike committed
    func (p *parser) nextc() int {
    
    	if p.pos >= len(p.re.expr) {
    
    		c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:len(p.re.expr)]);
    
    		p.ch = c;
    		p.pos += w;
    	}
    	return p.ch;
    }
    
    
    func newParser(re *Regexp) *parser {
    
    Rob Pike's avatar
    Rob Pike committed
    	p := new(parser);
    	p.re = re;
    	p.nextc();	// load p.ch
    	return p;
    
    }
    
    func special(c int) bool {
    
    Rob Pike's avatar
    Rob Pike committed
    	for _, r := range `\.+*?()|[]^$` {
    		if c == r {
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    	}
    
    	return false;
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    func specialcclass(c int) bool {
    
    Rob Pike's avatar
    Rob Pike committed
    	for _, r := range `\-[]` {
    		if c == r {
    
    	return false;
    
    func (p *parser) charClass() instr {
    
    Rob Pike's avatar
    Rob Pike committed
    	cc := newCharClass();
    
    Rob Pike's avatar
    Rob Pike committed
    	if p.c() == '^' {
    		cc.negate = true;
    		p.nextc();
    	}
    	left := -1;
    	for {
    		switch c := p.c(); c {
    
    Rob Pike's avatar
    Rob Pike committed
    		case ']', endOfFile:
    
    Rob Pike's avatar
    Rob Pike committed
    			if left >= 0 {
    
    				p.error = ErrBadRange;
    				return nil;
    
    Rob Pike's avatar
    Rob Pike committed
    			}
    
    			// Is it [^\n]?
    			if cc.negate && cc.ranges.Len() == 2 &&
    				cc.ranges.At(0) == '\n' && cc.ranges.At(1) == '\n' {
    				nl := new(_NotNl);
    				p.re.add(nl);
    				return nl;
    			}
    			p.re.add(cc);
    
    Rob Pike's avatar
    Rob Pike committed
    			return cc;
    		case '-':	// do this before backslash processing
    
    			p.error = ErrBadRange;
    			return nil;
    
    Rob Pike's avatar
    Rob Pike committed
    		case '\\':
    			c = p.nextc();
    			switch {
    
    Rob Pike's avatar
    Rob Pike committed
    			case c == endOfFile:
    
    				p.error = ErrExtraneousBackslash;
    				return nil;
    
    Rob Pike's avatar
    Rob Pike committed
    			case c == 'n':
    
    Rob Pike's avatar
    Rob Pike committed
    			case specialcclass(c):
    				// c is as delivered
    			default:
    
    				p.error = ErrBadBackslash;
    				return nil;
    
    Rob Pike's avatar
    Rob Pike committed
    			}
    			fallthrough;
    		default:
    			p.nextc();
    			switch {
    			case left < 0:	// first of pair
    				if p.c() == '-' {	// range
    					p.nextc();
    					left = c;
    				} else {	// single char
    
    Rob Pike's avatar
    Rob Pike committed
    				}
    			case left <= c:	// second of pair
    
    				cc.addRange(left, c);
    
    Rob Pike's avatar
    Rob Pike committed
    				left = -1;
    			default:
    
    				p.error = ErrBadRange;
    				return nil;
    
    	return nil;
    
    func (p *parser) term() (start, end instr) {
    
    	// term() is the leaf of the recursion, so it's sufficient to pick off the
    	// error state here for early exit.
    	// The other functions (closure(), concatenation() etc.) assume
    	// it's safe to recur to here.
    	if p.error != nil {
    
    	switch c := p.c(); c {
    
    Rob Pike's avatar
    Rob Pike committed
    	case '|', endOfFile:
    
    		p.error = ErrBareClosure;
    
    		return;
    
    Rob Pike's avatar
    Rob Pike committed
    	case ')':
    
    			p.error = ErrUnmatchedRpar;
    			return;
    
    Rob Pike's avatar
    Rob Pike committed
    	case ']':
    
    		p.error = ErrUnmatchedRbkt;
    		return;
    
    Rob Pike's avatar
    Rob Pike committed
    	case '^':
    		p.nextc();
    
    		start = p.re.add(new(_Bot));
    
    Rob Pike's avatar
    Rob Pike committed
    		return start, start;
    	case '$':
    		p.nextc();
    
    		start = p.re.add(new(_Eot));
    
    Rob Pike's avatar
    Rob Pike committed
    		return start, start;
    
    	case '.':
    		p.nextc();
    
    		start = p.re.add(new(_Any));
    
    Rob Pike's avatar
    Rob Pike committed
    		return start, start;
    	case '[':
    		p.nextc();
    
    		start = p.charClass();
    
    		if p.error != nil {
    
    Rob Pike's avatar
    Rob Pike committed
    		if p.c() != ']' {
    
    			p.error = ErrUnmatchedLbkt;
    			return;
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    		p.nextc();
    
    		return start, start;
    	case '(':
    		p.nextc();
    
    Rob Pike's avatar
    Rob Pike committed
    		p.re.nbra++;	// increment first so first subexpr is \1
    		nbra := p.re.nbra;
    
    		start, end = p.regexp();
    
    		if p.c() != ')' {
    
    			p.error = ErrUnmatchedLpar;
    			return;
    
    		p.nextc();
    
    		p.re.add(bra);
    
    		p.re.add(ebra);
    
    Rob Pike's avatar
    Rob Pike committed
    		bra.n = nbra;
    		ebra.n = nbra;
    
    		if start == nil {
    			if end == nil {
    				p.error = ErrInternal;
    				return;
    
    			start = ebra;
    
    		bra.setNext(start);
    
    	case '\\':
    		c = p.nextc();
    		switch {
    
    Rob Pike's avatar
    Rob Pike committed
    		case c == endOfFile:
    
    			p.error = ErrExtraneousBackslash;
    			return;
    
    		case c == 'n':
    
    		case special(c):
    			// c is as delivered
    		default:
    
    			p.error = ErrBadBackslash;
    			return;
    
    		}
    		fallthrough;
    	default:
    		p.nextc();
    
    Rob Pike's avatar
    Rob Pike committed
    		start = newChar(c);
    
    		p.re.add(start);
    
    		return start, start;
    
    	}
    	panic("unreachable");
    }
    
    
    func (p *parser) closure() (start, end instr) {
    	start, end = p.term();
    
    	if start == nil || p.error != nil {
    
    	}
    	switch p.c() {
    	case '*':
    		// (start,end)*:
    
    		p.re.add(alt);
    		end.setNext(alt);	// after end, do alt
    
    		alt.left = start;	// alternate brach: return to start
    
    		start = alt;		// alt becomes new (start, end)
    
    	case '+':
    		// (start,end)+:
    
    		p.re.add(alt);
    		end.setNext(alt);	// after end, do alt
    
    		alt.left = start;	// alternate brach: return to start
    
    		end = alt;		// start is unchanged; end is alt
    
    	case '?':
    		// (start,end)?:
    
    		p.re.add(alt);
    
    		p.re.add(nop);
    
    		alt.left = start;	// alternate branch is start
    
    		alt.setNext(nop);	// follow on to nop
    		end.setNext(nop);	// after end, go to nop
    
    		start = alt;		// start is now alt
    		end = nop;		// end is nop pointed to by both branches
    
    	}
    	switch p.nextc() {
    	case '*', '+', '?':
    
    	return;
    
    func (p *parser) concatenation() (start, end instr) {
    
    		nstart, nend := p.closure();
    
    		if p.error != nil {
    
    		case nstart == nil:	// end of this concatenation
    			if start == nil {	// this is the empty string
    
    				nop := p.re.add(new(_Nop));
    
    Rob Pike's avatar
    Rob Pike committed
    				return nop, nop;
    			}
    
    Rob Pike's avatar
    Rob Pike committed
    			return;
    
    		case start == nil:	// this is first element of concatenation
    
    			end.setNext(nstart);
    
    			end = nend;
    		}
    	}
    	panic("unreachable");
    }
    
    
    func (p *parser) regexp() (start, end instr) {
    	start, end = p.concatenation();
    
    	if p.error != nil {
    
    	for {
    		switch p.c() {
    		default:
    
    		case '|':
    			p.nextc();
    
    			nstart, nend := p.concatenation();
    
    			if p.error != nil {
    
    			p.re.add(alt);
    
    			alt.left = start;
    
    			alt.setNext(nstart);
    
    			p.re.add(nop);
    			end.setNext(nop);
    			nend.setNext(nop);
    
    			start, end = alt, nop;
    
    func unNop(i instr) instr {
    
    	for i.kind() == _NOP {
    
    	return i;
    
    func (re *Regexp) eliminateNops() {
    
    Rob Pike's avatar
    Rob Pike committed
    	for i := 0; i < re.inst.Len(); i++ {
    
    Rob Pike's avatar
    Rob Pike committed
    		inst := re.inst.At(i).(instr);
    
    		if inst.kind() == _END {
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    
    		inst.setNext(unNop(inst.next()));
    		if inst.kind() == _ALT {
    
    			alt := inst.(*_Alt);
    			alt.left = unNop(alt.left);
    
    func (re *Regexp) dump() {
    
    Rob Pike's avatar
    Rob Pike committed
    	for i := 0; i < re.inst.Len(); i++ {
    
    Rob Pike's avatar
    Rob Pike committed
    		inst := re.inst.At(i).(instr);
    
    		print(inst.index(), ": ");
    		inst.print();
    		if inst.kind() != _END {
    
    			print(" -> ", inst.next().index())
    
    Rob Pike's avatar
    Rob Pike committed
    		print("\n");
    
    func (re *Regexp) doParse() os.Error {
    
    Rob Pike's avatar
    Rob Pike committed
    	p := newParser(re);
    
    	re.add(start);
    	s, e := p.regexp();
    
    	if p.error != nil {
    
    	start.setNext(s);
    
    	e.setNext(re.add(new(_End)));
    
    Rob Pike's avatar
    Rob Pike committed
    	if debug {
    
    		re.dump();
    
    Rob Pike's avatar
    Rob Pike committed
    		println();
    	}
    
    	re.eliminateNops();
    
    Rob Pike's avatar
    Rob Pike committed
    	if debug {
    
    		re.dump();
    
    Rob Pike's avatar
    Rob Pike committed
    		println();
    	}
    
    // Compile parses a regular expression and returns, if successful, a Regexp
    // object that can be used to match against text.
    
    func Compile(str string) (regexp *Regexp, error os.Error) {
    
    	regexp = new(Regexp);
    	regexp.expr = str;
    	regexp.inst = vector.New(0);
    	error = regexp.doParse();
    	return;
    }
    
    // MustCompile is like Compile but panics if the expression cannot be parsed.
    // It simplifies safe initialization of global variables holding compiled regular
    // expressions.
    func MustCompile(str string) *Regexp {
    	regexp, error := Compile(str);
    	if error != nil {
    
    		panicln(`regexp: compiling "`, str, `": `, error.String())
    
    Rob Pike's avatar
    Rob Pike committed
    
    
    Rob Pike's avatar
    Rob Pike committed
    type state struct {
    	inst	instr;	// next instruction to execute
    
    Russ Cox's avatar
    Russ Cox committed
    	match	[]int;	// pairs of bracketing submatches. 0th is start,end
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    // Append new state to to-do list.  Leftmost-longest wins so avoid
    // adding a state that's already active.
    
    func (re *Regexp) addState(s []state, inst instr, match []int, pos, end int) []state {
    	switch inst.kind() {
    	case _BOT:
    		if pos == 0 {
    			s = re.addState(s, inst.next(), match, pos, end)
    		}
    		return s;
    	case _EOT:
    		if pos == end {
    			s = re.addState(s, inst.next(), match, pos, end)
    		}
    		return s;
    	case _BRA:
    		n := inst.(*_Bra).n;
    		match[2*n] = pos;
    		s = re.addState(s, inst.next(), match, pos, end);
    		return s;
    	case _EBRA:
    		n := inst.(*_Ebra).n;
    		match[2*n+1] = pos;
    		s = re.addState(s, inst.next(), match, pos, end);
    		return s;
    	}
    
    	index := inst.index();
    
    Rob Pike's avatar
    Rob Pike committed
    	l := len(s);
    
    Rob Pike's avatar
    Rob Pike committed
    	// TODO: Once the state is a vector and we can do insert, have inputs always
    	// go in order correctly and this "earlier" test is never necessary,
    	for i := 0; i < l; i++ {
    
    		if s[i].inst.index() == index &&	// same instruction
    
    			s[i].match[0] <= begin {	// earlier match already going; lefmost wins
    
    Rob Pike's avatar
    Rob Pike committed
    	}
    	if l == cap(s) {
    
    Rob Pike's avatar
    Rob Pike committed
    		s1 := make([]state, 2*l)[0:l];
    
    Rob Pike's avatar
    Rob Pike committed
    		copy(s1, s);
    
    Rob Pike's avatar
    Rob Pike committed
    		s = s1;
    	}
    
    	s = s[0 : l+1];
    
    Rob Pike's avatar
    Rob Pike committed
    	s[l].inst = inst;
    	s[l].match = match;
    
    	if inst.kind() == _ALT {
    		s1 := make([]int, 2*(re.nbra+1));
    
    Rob Pike's avatar
    Rob Pike committed
    		copy(s1, match);
    
    		s = re.addState(s, inst.(*_Alt).left, s1, pos, end);
    		// give other branch a copy of this match vector
    		s1 = make([]int, 2*(re.nbra+1));
    
    Rob Pike's avatar
    Rob Pike committed
    		copy(s1, match);
    
    		s = re.addState(s, inst.next(), s1, pos, end);
    	}
    
    Rob Pike's avatar
    Rob Pike committed
    	return s;
    }
    
    
    // Accepts either string or bytes - the logic is identical either way.
    // If bytes == nil, scan str.
    func (re *Regexp) doExecute(str string, bytes []byte, pos int) []int {
    
    Rob Pike's avatar
    Rob Pike committed
    	var s [2][]state;	// TODO: use a vector when state values (not ptrs) can be vector elements
    	s[0] = make([]state, 10)[0:0];
    	s[1] = make([]state, 10)[0:0];
    
    Rob Pike's avatar
    Rob Pike committed
    	in, out := 0, 1;
    
    Rob Pike's avatar
    Rob Pike committed
    	var final state;
    
    Rob Pike's avatar
    Rob Pike committed
    	found := false;
    
    	end := len(str);
    	if bytes != nil {
    
    Rob Pike's avatar
    Rob Pike committed
    		if !found {
    			// prime the pump if we haven't seen a match yet
    
    			match := make([]int, 2*(re.nbra+1));
    
    Rob Pike's avatar
    Rob Pike committed
    			for i := 0; i < len(match); i++ {
    
    				match[i] = -1	// no match seen; catches cases like "a(b)?c" on "ac"
    
    Rob Pike's avatar
    Rob Pike committed
    			}
    
    			match[0] = pos;
    
    			s[out] = re.addState(s[out], re.start.next(), match, pos, end);
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    		in, out = out, in;	// old out state is new in state
    		s[out] = s[out][0:0];	// clear out state
    
    		if found && len(s[in]) == 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    			// machine has completed
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    
    Rob Pike's avatar
    Rob Pike committed
    		charwidth := 1;
    
    Rob Pike's avatar
    Rob Pike committed
    		c := endOfFile;
    
    				c, charwidth = utf8.DecodeRuneInString(str[pos:end])
    
    				c, charwidth = utf8.DecodeRune(bytes[pos:end])
    
    Rob Pike's avatar
    Rob Pike committed
    		}
    
    Rob Pike's avatar
    Rob Pike committed
    		for i := 0; i < len(s[in]); i++ {
    
    Rob Pike's avatar
    Rob Pike committed
    			st := s[in][i];
    
    			switch s[in][i].inst.kind() {
    
    			case _BOT:
    			case _EOT:
    			case _CHAR:
    				if c == st.inst.(*_Char).char {
    
    					s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
    
    Rob Pike's avatar
    Rob Pike committed
    				}
    
    				if st.inst.(*_CharClass).matches(c) {
    
    					s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
    
    Rob Pike's avatar
    Rob Pike committed
    				}
    
    Rob Pike's avatar
    Rob Pike committed
    				if c != endOfFile {
    
    					s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
    
    Rob Pike's avatar
    Rob Pike committed
    				}
    
    			case _NOTNL:
    				if c != endOfFile && c != '\n' {
    
    					s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
    
    			case _BRA:
    			case _EBRA:
    			case _ALT:
    			case _END:
    
    Rob Pike's avatar
    Rob Pike committed
    				// choose leftmost longest
    				if !found ||	// first
    
    					st.match[0] < final.match[0] ||	// leftmost
    
    					(st.match[0] == final.match[0] && pos-charwidth > final.match[1]) {	// longest
    
    Rob Pike's avatar
    Rob Pike committed
    					final = st;
    
    					final.match[1] = pos - charwidth;
    
    Rob Pike's avatar
    Rob Pike committed
    				}
    				found = true;
    			default:
    
    				st.inst.print();
    
    Rob Pike's avatar
    Rob Pike committed
    				panic("unknown instruction in execute");
    			}
    		}
    	}
    	return final.match;
    }
    
    
    
    // ExecuteString matches the Regexp against the string s.
    
    // The return value is an array of integers, in pairs, identifying the positions of
    // substrings matched by the expression.
    //    s[a[0]:a[1]] is the substring matched by the entire expression.
    //    s[a[2*i]:a[2*i+1]] for i > 0 is the substring matched by the ith parenthesized subexpression.
    
    Rob Pike's avatar
    Rob Pike committed
    // A negative value means the subexpression did not match any element of the string.
    
    // An empty array means "no match".
    
    func (re *Regexp) ExecuteString(s string) (a []int) {
    
    	return re.doExecute(s, nil, 0)
    
    Rob Pike's avatar
    Rob Pike committed
    }
    
    // Execute matches the Regexp against the byte slice b.
    // The return value is an array of integers, in pairs, identifying the positions of
    // subslices matched by the expression.
    //    b[a[0]:a[1]] is the subslice matched by the entire expression.
    //    b[a[2*i]:a[2*i+1]] for i > 0 is the subslice matched by the ith parenthesized subexpression.
    // A negative value means the subexpression did not match any element of the slice.
    // An empty array means "no match".
    
    func (re *Regexp) Execute(b []byte) (a []int)	{ return re.doExecute("", b, 0) }
    
    
    
    // MatchString returns whether the Regexp matches the string s.
    
    // The return value is a boolean: true for match, false for no match.
    
    func (re *Regexp) MatchString(s string) bool	{ return len(re.doExecute(s, nil, 0)) > 0 }
    
    
    
    // Match returns whether the Regexp matches the byte slice b.
    // The return value is a boolean: true for match, false for no match.
    
    func (re *Regexp) Match(b []byte) bool	{ return len(re.doExecute("", b, 0)) > 0 }
    
    // MatchStrings matches the Regexp against the string s.
    // The return value is an array of strings matched by the expression.
    //    a[0] is the substring matched by the entire expression.
    //    a[i] for i > 0 is the substring matched by the ith parenthesized subexpression.
    // An empty array means ``no match''.
    func (re *Regexp) MatchStrings(s string) (a []string) {
    
    	r := re.doExecute(s, nil, 0);
    
    	a = make([]string, len(r)/2);
    
    		if r[i] != -1 {	// -1 means no match for this subexpression
    
    	return;
    
    // MatchSlices matches the Regexp against the byte slice b.
    // The return value is an array of subslices matched by the expression.
    //    a[0] is the subslice matched by the entire expression.
    //    a[i] for i > 0 is the subslice matched by the ith parenthesized subexpression.
    // An empty array means ``no match''.
    func (re *Regexp) MatchSlices(b []byte) (a [][]byte) {
    	r := re.doExecute("", b, 0);
    	if r == nil {
    
    	}
    	a = make([][]byte, len(r)/2);
    	for i := 0; i < len(r); i += 2 {
    		if r[i] != -1 {	// -1 means no match for this subexpression
    
    	return;
    
    }
    
    // MatchString checks whether a textual regular expression
    // matches a string.  More complicated queries need
    // to use Compile and the full Regexp interface.
    func MatchString(pattern string, s string) (matched bool, error os.Error) {
    	re, err := Compile(pattern);
    	if err != nil {
    
    	return re.MatchString(s), nil;
    
    // Match checks whether a textual regular expression
    
    // matches a byte slice.  More complicated queries need
    
    // to use Compile and the full Regexp interface.
    
    func Match(pattern string, b []byte) (matched bool, error os.Error) {
    
    	return re.Match(b), nil;
    
    // ReplaceAllString returns a copy of src in which all matches for the Regexp
    
    // have been replaced by repl.  No support is provided for expressions
    // (e.g. \1 or $1) in the replacement string.
    
    func (re *Regexp) ReplaceAllString(src, repl string) string {
    
    	lastMatchEnd := 0;	// end position of the most recent match
    	searchPos := 0;		// position where we next look for a match
    
    	buf := new(bytes.Buffer);
    
    	for searchPos <= len(src) {
    
    		a := re.doExecute(src, nil, searchPos);
    
    		if len(a) == 0 {
    
    		}
    
    		// Copy the unmatched characters before this match.
    
    		io.WriteString(buf, src[lastMatchEnd:a[0]]);
    
    
    		// Now insert a copy of the replacement string, but not for a
    		// match of the empty string immediately after another match.
    		// (Otherwise, we get double replacement for patterns that
    		// match both empty and nonempty strings.)
    		if a[1] > lastMatchEnd || a[0] == 0 {
    
    		}
    		lastMatchEnd = a[1];
    
    		// Advance past this match; always advance at least one character.
    
    		_, width := utf8.DecodeRuneInString(src[searchPos:len(src)]);
    		if searchPos+width > a[1] {
    
    		} else if searchPos+1 > a[1] {
    
    			// This clause is only needed at the end of the input
    			// string.  In that case, DecodeRuneInString returns width=0.
    
    		}
    	}
    
    	// Copy the unmatched characters after the last match.
    
    	io.WriteString(buf, src[lastMatchEnd:len(src)]);
    
    	return buf.String();
    
    // ReplaceAll returns a copy of src in which all matches for the Regexp
    // have been replaced by repl.  No support is provided for expressions
    // (e.g. \1 or $1) in the replacement text.
    func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
    
    	lastMatchEnd := 0;	// end position of the most recent match
    	searchPos := 0;		// position where we next look for a match
    
    	buf := new(bytes.Buffer);
    	for searchPos <= len(src) {
    		a := re.doExecute("", src, searchPos);
    		if len(a) == 0 {
    
    		}
    
    		// Copy the unmatched characters before this match.
    
    		buf.Write(src[lastMatchEnd:a[0]]);
    
    
    		// Now insert a copy of the replacement string, but not for a
    		// match of the empty string immediately after another match.
    		// (Otherwise, we get double replacement for patterns that
    		// match both empty and nonempty strings.)
    		if a[1] > lastMatchEnd || a[0] == 0 {
    
    		}
    		lastMatchEnd = a[1];
    
    		// Advance past this match; always advance at least one character.
    
    		_, width := utf8.DecodeRune(src[searchPos:len(src)]);
    		if searchPos+width > a[1] {
    
    		} else if searchPos+1 > a[1] {
    
    			// This clause is only needed at the end of the input
    			// string.  In that case, DecodeRuneInString returns width=0.
    
    		}
    	}
    
    	// Copy the unmatched characters after the last match.
    
    	buf.Write(src[lastMatchEnd:len(src)]);
    
    	return buf.Bytes();
    
    // QuoteMeta returns a string that quotes all regular expression metacharacters
    // inside the argument text; the returned string is a regular expression matching
    // the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
    func QuoteMeta(s string) string {
    
    	b := make([]byte, 2*len(s));
    
    
    	// A byte loop is correct because all metacharacters are ASCII.
    	j := 0;
    	for i := 0; i < len(s); i++ {
    		if special(int(s[i])) {
    			b[j] = '\\';
    			j++;
    		}
    		b[j] = s[i];
    		j++;
    	}
    	return string(b[0:j]);
    }
    
    
    // Find matches in slice b if b is non-nil, otherwise find matches in string s.
    func (re *Regexp) allMatches(s string, b []byte, n int, deliver func(int, int)) {
    	var end int;
    	if b == nil {
    
    	}
    
    	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
    		matches := re.doExecute(s, b, pos);
    		if len(matches) == 0 {
    
    		}
    
    		accept := true;
    		if matches[1] == pos {
    			// We've found an empty match.
    			if matches[0] == prevMatchEnd {
    				// We don't allow an empty match right
    				// after a previous match, so ignore it.
    
    				_, width = utf8.DecodeRuneInString(s[pos:end])