Skip to content
Snippets Groups Projects
testing.go 63 KiB
Newer Older
  • Learn to ignore specific revisions
  • Rob Pike's avatar
    Rob Pike committed
    // Copyright 2009 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    
    // Package testing provides support for automated testing of Go packages.
    
    // It is intended to be used in concert with the "go test" command, which automates
    
    // execution of any function of the form
    //     func TestXxx(*testing.T)
    
    // where Xxx does not start with a lowercase letter. The function name
    // serves to identify the test routine.
    
    // Within these functions, use the Error, Fail or related methods to signal failure.
    //
    // To write a new test suite, create a file whose name ends _test.go that
    // contains the TestXxx functions as described here. Put the file in the same
    // package as the one being tested. The file will be excluded from regular
    
    // package builds but will be included when the "go test" command is run.
    // For more detail, run "go help test" and "go help testflag".
    
    // A simple test function looks like this:
    //
    //     func TestAbs(t *testing.T) {
    //         got := Abs(-1)
    //         if got != 1 {
    //             t.Errorf("Abs(-1) = %d; want 1", got)
    
    Dave Cheney's avatar
    Dave Cheney committed
    //         }
    //     }
    //
    
    // Benchmarks
    //
    
    // Functions of the form
    //     func BenchmarkXxx(*testing.B)
    
    // are considered benchmarks, and are executed by the "go test" command when
    
    // its -bench flag is provided. Benchmarks are run sequentially.
    
    // For a description of the testing flags, see
    
    // https://golang.org/cmd/go/#hdr-Testing_flags.
    
    //
    // A sample benchmark function looks like this:
    
    //     func BenchmarkRandInt(b *testing.B) {
    
    //         for i := 0; i < b.N; i++ {
    
    Rob Pike's avatar
    Rob Pike committed
    //
    
    // The benchmark function must run the target code b.N times.
    
    Shenghou Ma's avatar
    Shenghou Ma committed
    // During benchmark execution, b.N is adjusted until the benchmark function lasts
    
    // long enough to be timed reliably. The output
    
    //     BenchmarkRandInt-8   	68453040	        17.8 ns/op
    // means that the loop ran 68453040 times at a speed of 17.8 ns per loop.
    
    //
    // If a benchmark needs some expensive setup before running, the timer
    
    //     func BenchmarkBigLen(b *testing.B) {
    
    //         for i := 0; i < b.N; i++ {
    
    Rob Pike's avatar
    Rob Pike committed
    //
    
    // If a benchmark needs to test performance in a parallel setting, it may use
    // the RunParallel helper function; such benchmarks are intended to be used with
    // the go test -cpu flag:
    //
    //     func BenchmarkTemplateParallel(b *testing.B) {
    //         templ := template.Must(template.New("test").Parse("Hello, {{.}}!"))
    //         b.RunParallel(func(pb *testing.PB) {
    //             var buf bytes.Buffer
    //             for pb.Next() {
    //                 buf.Reset()
    //                 templ.Execute(&buf, "World")
    //             }
    //         })
    //     }
    //
    
    // The package also runs and verifies example code. Example functions may
    
    // include a concluding line comment that begins with "Output:" and is compared with
    
    // the standard output of the function when the tests are run. (The comparison
    // ignores leading and trailing space.) These are examples of an example:
    
    Rob Pike's avatar
    Rob Pike committed
    //
    //     func ExampleHello() {
    
    //         fmt.Println("hello")
    //         // Output: hello
    
    Rob Pike's avatar
    Rob Pike committed
    //     }
    //
    
    //         fmt.Println("hello, and")
    //         fmt.Println("goodbye")
    //         // Output:
    //         // hello, and
    //         // goodbye
    //     }
    //
    // The comment prefix "Unordered output:" is like "Output:", but matches any
    // line order:
    //
    //     func ExamplePerm() {
    
    taisa's avatar
    taisa committed
    //         for _, value := range Perm(5) {
    
    //             fmt.Println(value)
    //         }
    //         // Unordered output: 4
    //         // 2
    //         // 1
    //         // 3
    //         // 0
    
    //     }
    //
    // Example functions without output comments are compiled but not executed.
    
    Rob Pike's avatar
    Rob Pike committed
    //
    
    // The naming convention to declare examples for the package, a function F, a type T and
    
    Rob Pike's avatar
    Rob Pike committed
    // method M on type T are:
    //
    
    //     func Example() { ... }
    
    Rob Pike's avatar
    Rob Pike committed
    //     func ExampleF() { ... }
    //     func ExampleT() { ... }
    //     func ExampleT_M() { ... }
    //
    
    // Multiple example functions for a package/type/function/method may be provided by
    
    Rob Pike's avatar
    Rob Pike committed
    // appending a distinct suffix to the name. The suffix must start with a
    // lower-case letter.
    //
    
    //     func Example_suffix() { ... }
    
    Rob Pike's avatar
    Rob Pike committed
    //     func ExampleF_suffix() { ... }
    //     func ExampleT_suffix() { ... }
    //     func ExampleT_M_suffix() { ... }
    //
    
    // The entire test file is presented as the example when it contains a single
    // example function, at least one other function, type, variable, or constant
    // declaration, and no test or benchmark functions.
    
    // 'go test' and the testing package support fuzzing, a testing technique where
    // a function is called with randomly generated inputs to find bugs not
    // anticipated by unit tests.
    //
    // A fuzz target is a function that declares a set of "seed" inputs by calling
    // F.Add, then provides a fuzz function by calling F.Fuzz. A fuzz target has
    // the form:
    //
    
    // For example:
    //
    
    //     func FuzzHex(f *testing.F) {
    //       for _, seed := range [][]byte{{}, {0}, {9}, {0xa}, {0xf}, {1, 2, 3, 4}} {
    //         f.Add(seed)
    //       }
    //       f.Fuzz(func(t *testing.T, in []byte) {
    //         enc := hex.EncodeToString(in)
    //         out, err := hex.DecodeString(enc)
    //         if err != nil {
    //           t.Fatalf("%v: decode: %v", in, err)
    //         }
    //         if !bytes.Equal(in, out) {
    //           t.Fatalf("%v: not equal after round trip: %v", in, out)
    //         }
    //       })
    
    //     }
    //
    // Seed inputs may be registered by calling F.Add or by storing files in the
    // directory testdata/fuzz/<Name> (where <Name> is the name of the fuzz target)
    // within the package containing the fuzz target. Seed inputs are optional, but
    // the fuzzing engine may find bugs more efficiently when provided with a set
    // of small seed inputs with good code coverage.
    //
    // The fuzz function provided to F.Fuzz must accept a *testing.T parameter,
    // followed by one or more parameters for random inputs. The types of arguments
    // passed to F.Add must be identical to the types of these parameters. The fuzz
    // function may signal that it's found a problem the same way tests do: by
    // calling T.Fail (or any method that calls it like T.Error or T.Fatal) or by
    // panicking.
    //
    // When fuzzing is enabled (by setting the -fuzz flag to a regular expression
    // that matches a specific fuzz target), the fuzz function is called with
    // arguments generated by repeatedly making random changes to the seed inputs.
    // On supported platforms, 'go test' compiles the test executable with fuzzing
    // coverage instrumentation. The fuzzing engine uses that instrumentation to
    // find and cache inputs that expand coverage, increasing the liklihood of
    // finding bugs. If the fuzz function finds a problem, the fuzzing engine writes
    // the inputs that caused the problem to a file in the directory
    // testdata/fuzz/<Name> within the package directory. This file later serves as
    // a seed input. If the file can't be written at that location (for example,
    // because the directory is read-only), the fuzzing engine writes the file to
    // the fuzz cache directory within the build cache instead.
    //
    // When fuzzing is disabled, the fuzz function is called with the seed inputs
    // registered with F.Add and seed inputs from testdata/fuzz/<Name>. In this
    // mode, the fuzz target acts much like a regular test, with subtests started
    // with F.Fuzz instead of T.Run.
    
    // TODO(#48255): write and link to documentation that will be helpful to users
    // who are unfamiliar with fuzzing.
    
    // Skipping
    //
    // Tests or benchmarks may be skipped at run time with a call to
    // the Skip method of *T or *B:
    //
    //     func TestTimeConsuming(t *testing.T) {
    //         if testing.Short() {
    //             t.Skip("skipping test in short mode.")
    //         }
    //         ...
    //     }
    //
    
    // The Skip method of *T can be used in a fuzz target if the input is invalid,
    // but should not be considered a crash. For example:
    //
    //     func FuzzJSONMarshalling(f *testing.F) {
    //         f.Fuzz(func(t *testing.T, b []byte) {
    //             var v interface{}
    //             if err := json.Unmarshal(b, &v); err != nil {
    //                 t.Skip()
    //             }
    //             if _, err := json.Marshal(v); err != nil {
    //                 t.Error("Marshal: %v", err)
    //             }
    //         })
    //     }
    //
    
    // Subtests and Sub-benchmarks
    //
    // The Run methods of T and B allow defining subtests and sub-benchmarks,
    // without having to define separate functions for each. This enables uses
    // like table-driven benchmarks and creating hierarchical tests.
    // It also provides a way to share common setup and tear-down code:
    //
    //     func TestFoo(t *testing.T) {
    //         // <setup code>
    //         t.Run("A=1", func(t *testing.T) { ... })
    //         t.Run("A=2", func(t *testing.T) { ... })
    //         t.Run("B=1", func(t *testing.T) { ... })
    //         // <tear-down code>
    //     }
    //
    // Each subtest and sub-benchmark has a unique name: the combination of the name
    // of the top-level test and the sequence of names passed to Run, separated by
    // slashes, with an optional trailing sequence number for disambiguation.
    //
    
    // The argument to the -run, -bench, and -fuzz command-line flags is an unanchored regular
    
    // expression that matches the test's name. For tests with multiple slash-separated
    // elements, such as subtests, the argument is itself slash-separated, with
    // expressions matching each name element in turn. Because it is unanchored, an
    // empty expression matches any string.
    // For example, using "matching" to mean "whose name contains":
    //
    
    //     go test -run ''        # Run all tests.
    //     go test -run Foo       # Run top-level tests matching "Foo", such as "TestFooBar".
    //     go test -run Foo/A=    # For top-level tests matching "Foo", run subtests matching "A=".
    //     go test -run /A=1      # For all top-level tests, run subtests matching "A=1".
    //     go test -fuzz FuzzFoo  # Fuzz the target matching "FuzzFoo"
    //
    // The -run argument can also be used to run a specific value in the seed
    // corpus, for debugging. For example:
    //     go test -run=FuzzFoo/9ddb952d9814
    //
    // The -fuzz and -run flags can both be set, in order to fuzz a target but
    // skip the execution of all other tests.
    
    //
    // Subtests can also be used to control parallelism. A parent test will only
    // complete once all of its subtests complete. In this example, all tests are
    // run in parallel with each other, and only with each other, regardless of
    // other top-level tests that may be defined:
    //
    //     func TestGroupedParallel(t *testing.T) {
    //         for _, tc := range tests {
    //             tc := tc // capture range variable
    //             t.Run(tc.Name, func(t *testing.T) {
    //                 t.Parallel()
    //                 ...
    //             })
    //         }
    //     }
    //
    
    // The race detector kills the program if it exceeds 8128 concurrent goroutines,
    
    // so use care when running parallel tests with the -race flag set.
    //
    
    // Run does not return until parallel subtests have completed, providing a way
    // to clean up after a group of parallel tests:
    //
    //     func TestTeardownParallel(t *testing.T) {
    //         // This Run will not return until the parallel tests finish.
    //         t.Run("group", func(t *testing.T) {
    //             t.Run("Test1", parallelTest1)
    //             t.Run("Test2", parallelTest2)
    //             t.Run("Test3", parallelTest3)
    //         })
    //         // <tear-down code>
    //     }
    //
    
    // It is sometimes necessary for a test or benchmark program to do extra setup or teardown
    // before or after it executes. It is also sometimes necessary to control
    
    // which code runs on the main thread. To support these and other cases,
    // if a test file contains a function:
    //
    //	func TestMain(m *testing.M)
    //
    
    // then the generated test will call TestMain(m) instead of running the tests or benchmarks
    
    // directly. TestMain runs in the main goroutine and can do whatever setup
    
    // and teardown is necessary around a call to m.Run. m.Run will return an exit
    
    // code that may be passed to os.Exit. If TestMain returns, the test wrapper
    
    // will pass the result of m.Run to os.Exit itself.
    //
    // When TestMain is called, flag.Parse has not been run. If TestMain depends on
    // command-line flags, including those of the testing package, it should call
    // flag.Parse explicitly. Command line flags are always parsed by the time test
    // or benchmark functions run.
    
    // A simple implementation of TestMain is:
    
    //	func TestMain(m *testing.M) {
    
    //		// call flag.Parse() here if TestMain uses flags
    
    // TestMain is a low-level primitive and should not be necessary for casual
    // testing needs, where ordinary test functions suffice.
    
    Rob Pike's avatar
    Rob Pike committed
    package testing
    
    
    Russ Cox's avatar
    Russ Cox committed
    import (
    
    	"runtime/trace"
    
    	"sync/atomic"
    
    var initRan bool
    
    // Init registers testing flags. These flags are automatically registered by
    // the "go test" command before running test functions, so Init is only needed
    // when calling functions such as Benchmark without using "go test".
    //
    // Init has no effect if it was already called.
    func Init() {
    	if initRan {
    		return
    	}
    	initRan = true
    
    	// The short flag requests that tests run more quickly, but its functionality
    
    	// is provided by test writers themselves. The testing package is just its
    	// home. The all.bash installation script sets it to make installation more
    
    	// efficient, but by default the flag is off so a plain "go test" will do a
    
    	// full test of the package.
    	short = flag.Bool("test.short", false, "run smaller test suite to save time")
    
    
    	// The failfast flag requests that test execution stop after the first test failure.
    	failFast = flag.Bool("test.failfast", false, "do not start new tests after the first test failure")
    
    
    	// The directory in which to create profile files and the like. When run from
    	// "go test", the binary always runs in the source directory for the package;
    	// this flag lets "go test" tell the binary to write the files in the directory where
    	// the "go test" command is run.
    
    	outputDir = flag.String("test.outputdir", "", "write profiles to `dir`")
    
    	// Report as tests are run; default is silent for success.
    
    	chatty = flag.Bool("test.v", false, "verbose: print additional output")
    	count = flag.Uint("test.count", 1, "run tests and benchmarks `n` times")
    	coverProfile = flag.String("test.coverprofile", "", "write a coverage profile to `file`")
    	matchList = flag.String("test.list", "", "list tests, examples, and benchmarks matching `regexp` then exit")
    	match = flag.String("test.run", "", "run only tests and examples matching `regexp`")
    	memProfile = flag.String("test.memprofile", "", "write an allocation profile to `file`")
    	memProfileRate = flag.Int("test.memprofilerate", 0, "set memory allocation profiling `rate` (see runtime.MemProfileRate)")
    	cpuProfile = flag.String("test.cpuprofile", "", "write a cpu profile to `file`")
    	blockProfile = flag.String("test.blockprofile", "", "write a goroutine blocking profile to `file`")
    	blockProfileRate = flag.Int("test.blockprofilerate", 1, "set blocking profile `rate` (see runtime.SetBlockProfileRate)")
    	mutexProfile = flag.String("test.mutexprofile", "", "write a mutex contention profile to the named file after execution")
    
    	mutexProfileFraction = flag.Int("test.mutexprofilefraction", 1, "if >= 0, calls runtime.SetMutexProfileFraction()")
    
    	panicOnExit0 = flag.Bool("test.paniconexit0", false, "panic on call to os.Exit(0)")
    
    	traceFile = flag.String("test.trace", "", "write an execution trace to `file`")
    	timeout = flag.Duration("test.timeout", 0, "panic test binary after duration `d` (default 0, timeout disabled)")
    	cpuListStr = flag.String("test.cpu", "", "comma-separated `list` of cpu counts to run each test with")
    	parallel = flag.Int("test.parallel", runtime.GOMAXPROCS(0), "run at most `n` tests in parallel")
    	testlog = flag.String("test.testlogfile", "", "write test action log to `file` (for use only by cmd/go)")
    
    	shuffle = flag.String("test.shuffle", "off", "randomize the execution order of tests and benchmarks")
    
    }
    
    var (
    	// Flags, registered during Init.
    	short                *bool
    	failFast             *bool
    	outputDir            *string
    	chatty               *bool
    	count                *uint
    	coverProfile         *string
    	matchList            *string
    	match                *string
    	memProfile           *string
    	memProfileRate       *int
    	cpuProfile           *string
    	blockProfile         *string
    	blockProfileRate     *int
    	mutexProfile         *string
    	mutexProfileFraction *int
    
    	traceFile            *string
    	timeout              *time.Duration
    	cpuListStr           *string
    	parallel             *int
    
    	haveExamples bool // are there examples?
    
    
    	cpuList     []int
    	testlogFile *os.File
    
    
    	numFailed uint32 // number of test failures
    
    	lastNameMu sync.Mutex // guards lastName
    	lastName   string     // last printed test name in chatty mode
    }
    
    
    func newChattyPrinter(w io.Writer) *chattyPrinter {
    	return &chattyPrinter{w: w}
    
    // Updatef prints a message about the status of the named test to w.
    //
    // The formatted message must include the test name itself.
    func (p *chattyPrinter) Updatef(testName, format string, args ...interface{}) {
    	p.lastNameMu.Lock()
    	defer p.lastNameMu.Unlock()
    
    	// Since the message already implies an association with a specific new test,
    	// we don't need to check what the old test name was or log an extra CONT line
    	// for it. (We're updating it anyway, and the current message already includes
    	// the test name.)
    	p.lastName = testName
    	fmt.Fprintf(p.w, format, args...)
    
    // Printf prints a message, generated by the named test, that does not
    // necessarily mention that tests's name itself.
    func (p *chattyPrinter) Printf(testName, format string, args ...interface{}) {
    
    	p.lastNameMu.Lock()
    	defer p.lastNameMu.Unlock()
    
    	if p.lastName == "" {
    		p.lastName = testName
    	} else if p.lastName != testName {
    
    		fmt.Fprintf(p.w, "=== CONT  %s\n", testName)
    
    		p.lastName = testName
    	}
    
    // The maximum number of stack frames to go through when skipping helper functions for
    // the purpose of decorating log messages.
    const maxStackLen = 50
    
    
    // common holds the elements common between T and B and
    // captures common methods such as Errorf.
    type common struct {
    
    	mu          sync.RWMutex         // guards this group of fields
    	output      []byte               // Output generated by test or benchmark.
    	w           io.Writer            // For flushToParent.
    	ran         bool                 // Test or benchmark (or one of its subtests) was executed.
    	failed      bool                 // Test or benchmark has failed.
    
    	skipped     bool                 // Test or benchmark has been skipped.
    
    	done        bool                 // Test is finished and all subtests have completed.
    	helperPCs   map[uintptr]struct{} // functions to be skipped when writing file/line info
    	helperNames map[string]struct{}  // helperPCs converted to function names
    	cleanups    []func()             // optional functions to be called at the end of the test
    	cleanupName string               // Name of the cleanup function.
    	cleanupPc   []uintptr            // The stack trace at the point where Cleanup was called.
    
    	chatty     *chattyPrinter // A copy of chattyPrinter, if the chatty flag is set.
    	bench      bool           // Whether the current test is a benchmark.
    	hasSub     int32          // Written atomically.
    	raceErrors int            // Number of races detected during test.
    	runner     string         // Function name of tRunner running the test.
    
    	level    int       // Nesting depth of test or benchmark.
    
    	creator  []uintptr // If level > 0, the stack trace at the point where the parent called t.Run.
    
    	name     string    // Name of test or benchmark.
    
    	start    time.Time // Time test or benchmark started
    	duration time.Duration
    
    	barrier  chan bool // To signal parallel subtests they may start. Nil when T.Parallel is not present (B) or not usable (when fuzzing).
    
    	signal   chan bool // To signal a test is done.
    	sub      []*T      // Queue of subtests to be run in parallel.
    
    	tempDirMu  sync.Mutex
    	tempDir    string
    	tempDirErr error
    	tempDirSeq int32
    
    // Short reports whether the -test.short flag is set.
    func Short() bool {
    
    	if short == nil {
    		panic("testing: Short called before Init")
    	}
    
    	// Catch code that calls this from TestMain without first calling flag.Parse.
    
    		panic("testing: Short called before Parse")
    
    // CoverMode reports what the test coverage mode is set to. The
    // values are "set", "count", or "atomic". The return value will be
    // empty if test coverage is not enabled.
    func CoverMode() string {
    	return cover.Mode
    }
    
    
    // Verbose reports whether the -test.v flag is set.
    func Verbose() bool {
    
    	// Same as in Short.
    
    	if chatty == nil {
    		panic("testing: Verbose called before Init")
    	}
    	if !flag.Parsed() {
    
    		panic("testing: Verbose called before Parse")
    
    // frameSkip searches, starting after skip frames, for the first caller frame
    
    // in a function not marked as a helper and returns that frame.
    // The search stops if it finds a tRunner function that
    // was the entry point into the test and the test is not a subtest.
    
    // This function must be called with c.mu held.
    
    func (c *common) frameSkip(skip int) runtime.Frame {
    	// If the search continues into the parent test, we'll have to hold
    	// its mu temporarily. If we then return, we need to unlock it.
    	shouldUnlock := false
    	defer func() {
    		if shouldUnlock {
    			c.mu.Unlock()
    		}
    	}()
    	var pc [maxStackLen]uintptr
    
    	// Skip two extra frames to account for this function
    	// and runtime.Callers itself.
    	n := runtime.Callers(skip+2, pc[:])
    	if n == 0 {
    		panic("testing: zero callers found")
    	}
    	frames := runtime.CallersFrames(pc[:n])
    
    	var firstFrame, prevFrame, frame runtime.Frame
    	for more := true; more; prevFrame = frame {
    
    		frame, more = frames.Next()
    
    		if frame.Function == "runtime.gopanic" {
    			continue
    		}
    
    		if frame.Function == c.cleanupName {
    			frames = runtime.CallersFrames(c.cleanupPc)
    			continue
    		}
    
    		if firstFrame.PC == 0 {
    			firstFrame = frame
    		}
    
    		if frame.Function == c.runner {
    
    			// We've gone up all the way to the tRunner calling
    			// the test function (so the user must have
    			// called tb.Helper from inside that test function).
    
    			// If this is a top-level test, only skip up to the test function itself.
    			// If we're in a subtest, continue searching in the parent test,
    			// starting from the point of the call to Run which created this subtest.
    			if c.level > 1 {
    				frames = runtime.CallersFrames(c.creator)
    				parent := c.parent
    				// We're no longer looking at the current c after this point,
    				// so we should unlock its mu, unless it's the original receiver,
    				// in which case our caller doesn't expect us to do that.
    				if shouldUnlock {
    					c.mu.Unlock()
    				}
    				c = parent
    				// Remember to unlock c.mu when we no longer need it, either
    				// because we went up another nesting level, or because we
    				// returned.
    				shouldUnlock = true
    				c.mu.Lock()
    				continue
    			}
    			return prevFrame
    
    		// If more helper PCs have been added since we last did the conversion
    		if c.helperNames == nil {
    			c.helperNames = make(map[string]struct{})
    			for pc := range c.helperPCs {
    				c.helperNames[pcToName(pc)] = struct{}{}
    			}
    		}
    
    		if _, ok := c.helperNames[frame.Function]; !ok {
    
    			// Found a frame that wasn't inside a helper function.
    
    // decorate prefixes the string with the file and line of the call site
    
    // and inserts the final newline if needed and indentation spaces for formatting.
    
    // This function must be called with c.mu held.
    
    func (c *common) decorate(s string, skip int) string {
    	frame := c.frameSkip(skip)
    
    	file := frame.File
    	line := frame.Line
    	if file != "" {
    
    		// Truncate file name at last file name separator.
    
    		if index := strings.LastIndex(file, "/"); index >= 0 {
    
    			file = file[index+1:]
    		} else if index = strings.LastIndex(file, "\\"); index >= 0 {
    			file = file[index+1:]
    
    	// Every line is indented at least 4 spaces.
    	buf.WriteString("    ")
    
    	fmt.Fprintf(buf, "%s:%d: ", file, line)
    	lines := strings.Split(s, "\n")
    
    	if l := len(lines); l > 1 && lines[l-1] == "" {
    		lines = lines[:l-1]
    	}
    
    	for i, line := range lines {
    		if i > 0 {
    
    			// Second and subsequent lines are indented an additional 4 spaces.
    			buf.WriteString("\n        ")
    
    	buf.WriteByte('\n')
    
    // flushToParent writes c.output to the parent after first writing the header
    // with the given format and arguments.
    
    func (c *common) flushToParent(testName, format string, args ...interface{}) {
    
    	p := c.parent
    	p.mu.Lock()
    	defer p.mu.Unlock()
    
    	c.mu.Lock()
    	defer c.mu.Unlock()
    
    
    	if len(c.output) > 0 {
    		format += "%s"
    		args = append(args[:len(args):len(args)], c.output)
    		c.output = c.output[:0] // but why?
    	}
    
    	if c.chatty != nil && p.w == c.chatty.w {
    		// We're flushing to the actual output, so track that this output is
    		// associated with a specific test (and, specifically, that the next output
    		// is *not* associated with that test).
    		//
    		// Moreover, if c.output is non-empty it is important that this write be
    		// atomic with respect to the output of other tests, so that we don't end up
    		// with confusing '=== CONT' lines in the middle of our '--- PASS' block.
    		// Neither humans nor cmd/test2json can parse those easily.
    		// (See https://golang.org/issue/40771.)
    		c.chatty.Updatef(testName, format, args...)
    	} else {
    		// We're flushing to the output buffer of the parent test, which will
    		// itself follow a test-name header when it is finally flushed to stdout.
    		fmt.Fprintf(p.w, format, args...)
    	}
    
    type indenter struct {
    	c *common
    }
    
    func (w indenter) Write(b []byte) (n int, err error) {
    	n = len(b)
    	for len(b) > 0 {
    		end := bytes.IndexByte(b, '\n')
    		if end == -1 {
    			end = len(b)
    		} else {
    			end++
    		}
    		// An indent of 4 spaces will neatly align the dashes with the status
    		// indicator of the parent.
    		const indent = "    "
    		w.c.output = append(w.c.output, indent...)
    		w.c.output = append(w.c.output, b[:end]...)
    		b = b[end:]
    	}
    	return
    }
    
    
    // fmtDuration returns a string representing d in the form "87.00s".
    func fmtDuration(d time.Duration) string {
    	return fmt.Sprintf("%.2fs", d.Seconds())
    }
    
    
    // TB is the interface common to T and B.
    type TB interface {
    
    	Cleanup(func())
    
    	Error(args ...interface{})
    	Errorf(format string, args ...interface{})
    	Fail()
    	FailNow()
    	Failed() bool
    	Fatal(args ...interface{})
    	Fatalf(format string, args ...interface{})
    
    	Helper()
    
    	Log(args ...interface{})
    	Logf(format string, args ...interface{})
    
    	Name() string
    
    Russ Cox's avatar
    Russ Cox committed
    	Setenv(key, value string)
    
    	Skip(args ...interface{})
    	SkipNow()
    	Skipf(format string, args ...interface{})
    	Skipped() bool
    
    	TempDir() string
    
    
    	// A private method to prevent users implementing the
    	// interface and so future additions to it will not
    	// violate Go 1 compatibility.
    	private()
    }
    
    var _ TB = (*T)(nil)
    var _ TB = (*B)(nil)
    
    
    // T is a type passed to Test functions to manage test state and support formatted test logs.
    
    //
    // A test ends when its Test function returns or calls any of the methods
    // FailNow, Fatal, Fatalf, SkipNow, Skip, or Skipf. Those methods, as well as
    // the Parallel method, must be called only from the goroutine running the
    // Test function.
    //
    // The other reporting methods, such as the variations of Log and Error,
    // may be called simultaneously from multiple goroutines.
    
    Russ Cox's avatar
    Russ Cox committed
    type T struct {
    
    Alexey Vilenski's avatar
    Alexey Vilenski committed
    	isEnvSet   bool
    
    	context    *testContext // For running tests and subtests.
    
    func (c *common) private() {}
    
    
    // Name returns the name of the running (sub-) test or benchmark.
    //
    // The name will include the name of the test along with the names of
    // any nested sub-tests. If two sibling sub-tests have the same name,
    // Name will append a suffix to guarantee the returned name is unique.
    
    func (c *common) Name() string {
    	return c.name
    }
    
    
    func (c *common) setRan() {
    	if c.parent != nil {
    		c.parent.setRan()
    	}
    	c.mu.Lock()
    	defer c.mu.Unlock()
    	c.ran = true
    }
    
    
    // Fail marks the function as having failed but continues execution.
    
    func (c *common) Fail() {
    
    	if c.parent != nil {
    		c.parent.Fail()
    	}
    
    	c.mu.Lock()
    	defer c.mu.Unlock()
    
    	// c.done needs to be locked to synchronize checks to c.done in parent tests.
    	if c.done {
    		panic("Fail in goroutine after " + c.name + " has completed")
    	}
    
    Dave Cheney's avatar
    Dave Cheney committed
    // Failed reports whether the function has failed.
    
    func (c *common) Failed() bool {
    	c.mu.RLock()
    
    	failed := c.failed
    	c.mu.RUnlock()
    	return failed || c.raceErrors+race.Errors() > 0
    
    // FailNow marks the function as having failed and stops its execution
    
    // by calling runtime.Goexit (which then runs all deferred calls in the
    // current goroutine).
    
    // Execution will continue at the next test or benchmark.
    
    // FailNow must be called from the goroutine running the
    // test or benchmark function, not from other goroutines
    // created during the test. Calling FailNow does not stop
    // those other goroutines.
    
    func (c *common) FailNow() {
    	c.Fail()
    
    Russ Cox's avatar
    Russ Cox committed
    
    	// Calling runtime.Goexit will exit the goroutine, which
    	// will run the deferred functions in this goroutine,
    	// which will eventually run the deferred lines in tRunner,
    	// which will signal to the test loop that this test is done.
    	//
    	// A previous version of this code said:
    	//
    	//	c.duration = ...
    	//	c.signal <- c.self
    	//	runtime.Goexit()
    	//
    	// This previous version duplicated code (those lines are in
    	// tRunner no matter what), but worse the goroutine teardown
    	// implicit in runtime.Goexit was not guaranteed to complete
    
    	// before the test exited. If a test deferred an important cleanup
    
    Russ Cox's avatar
    Russ Cox committed
    	// function (like removing temporary files), there was no guarantee
    
    	// it would run on a test failure. Because we send on c.signal during
    
    Russ Cox's avatar
    Russ Cox committed
    	// a top-of-stack deferred function now, we know that the send
    	// only happens after any other stacked defers have completed.
    
    // log generates the output. It's always at the same stack depth.
    
    func (c *common) log(s string) {
    
    	c.logDepth(s, 3) // logDepth + log + public function
    }
    
    
    // logDepth generates the output at an arbitrary stack depth.
    
    func (c *common) logDepth(s string, depth int) {
    
    	c.mu.Lock()
    	defer c.mu.Unlock()
    
    		// This test has already finished. Try and log this message
    		// with our parent. If we don't have a parent, panic.
    		for parent := c.parent; parent != nil; parent = parent.parent {
    			parent.mu.Lock()
    			defer parent.mu.Unlock()
    			if !parent.done {
    				parent.output = append(parent.output, parent.decorate(s, depth+1)...)
    				return
    			}
    		}
    
    		panic("Log in goroutine after " + c.name + " has completed: " + s)
    
    			if c.bench {
    				// Benchmarks don't print === CONT, so we should skip the test
    				// printer and just print straight to stdout.
    				fmt.Print(c.decorate(s, depth+1))
    			} else {
    
    				c.chatty.Printf(c.name, "%s", c.decorate(s, depth+1))
    
    			return
    		}
    		c.output = append(c.output, c.decorate(s, depth+1)...)
    
    // Log formats its arguments using default formatting, analogous to Println,
    
    // and records the text in the error log. For tests, the text will be printed only if
    // the test fails or the -test.v flag is set. For benchmarks, the text is always
    // printed to avoid having performance depend on the value of the -test.v flag.
    
    func (c *common) Log(args ...interface{}) { c.log(fmt.Sprintln(args...)) }
    
    // Logf formats its arguments according to the format, analogous to Printf, and
    // records the text in the error log. A final newline is added if not provided. For
    // tests, the text will be printed only if the test fails or the -test.v flag is
    // set. For benchmarks, the text is always printed to avoid having performance
    // depend on the value of the -test.v flag.
    
    func (c *common) Logf(format string, args ...interface{}) { c.log(fmt.Sprintf(format, args...)) }
    
    // Error is equivalent to Log followed by Fail.
    
    func (c *common) Error(args ...interface{}) {
    	c.log(fmt.Sprintln(args...))
    	c.Fail()
    
    // Errorf is equivalent to Logf followed by Fail.
    
    func (c *common) Errorf(format string, args ...interface{}) {
    	c.log(fmt.Sprintf(format, args...))
    	c.Fail()
    
    // Fatal is equivalent to Log followed by FailNow.
    
    func (c *common) Fatal(args ...interface{}) {
    	c.log(fmt.Sprintln(args...))
    	c.FailNow()
    
    // Fatalf is equivalent to Logf followed by FailNow.
    
    func (c *common) Fatalf(format string, args ...interface{}) {
    	c.log(fmt.Sprintf(format, args...))
    	c.FailNow()
    
    // Skip is equivalent to Log followed by SkipNow.
    func (c *common) Skip(args ...interface{}) {
    	c.log(fmt.Sprintln(args...))
    	c.SkipNow()
    }
    
    // Skipf is equivalent to Logf followed by SkipNow.
    func (c *common) Skipf(format string, args ...interface{}) {
    	c.log(fmt.Sprintf(format, args...))
    	c.SkipNow()
    }
    
    
    // SkipNow marks the test as having been skipped and stops its execution
    // by calling runtime.Goexit.
    
    // If a test fails (see Error, Errorf, Fail) and is then skipped,
    // it is still considered to have failed.
    
    // Execution will continue at the next test or benchmark. See also FailNow.
    // SkipNow must be called from the goroutine running the test, not from
    // other goroutines created during the test. Calling SkipNow does not stop
    // those other goroutines.
    func (c *common) SkipNow() {
    	c.mu.Lock()
    	c.skipped = true
    
    }
    
    // Skipped reports whether the test was skipped.
    func (c *common) Skipped() bool {
    	c.mu.RLock()
    	defer c.mu.RUnlock()
    	return c.skipped
    }
    
    
    // Helper marks the calling function as a test helper function.
    // When printing file and line information, that function will be skipped.
    // Helper may be called simultaneously from multiple goroutines.
    func (c *common) Helper() {
    	c.mu.Lock()
    	defer c.mu.Unlock()
    
    	if c.helperPCs == nil {
    		c.helperPCs = make(map[uintptr]struct{})
    	}
    	// repeating code from callerName here to save walking a stack frame
    	var pc [1]uintptr
    	n := runtime.Callers(2, pc[:]) // skip runtime.Callers + Helper
    	if n == 0 {
    		panic("testing: zero callers found")
    	}
    	if _, found := c.helperPCs[pc[0]]; !found {
    		c.helperPCs[pc[0]] = struct{}{}
    		c.helperNames = nil // map will be recreated next time it is needed
    
    // Cleanup registers a function to be called when the test (or subtest) and all its
    
    // subtests complete. Cleanup functions will be called in last added,
    // first called order.
    
    func (c *common) Cleanup(f func()) {
    
    	var pc [maxStackLen]uintptr
    	// Skip two extra frames to account for this function and runtime.Callers itself.
    	n := runtime.Callers(2, pc[:])
    	cleanupPc := pc[:n]
    
    	fn := func() {
    		defer func() {
    			c.mu.Lock()
    			defer c.mu.Unlock()
    			c.cleanupName = ""
    			c.cleanupPc = nil
    		}()
    
    		name := callerName(0)