Skip to content
Snippets Groups Projects
daa_pnc_anonymity_credential_installation.spthy 8.57 KiB
Newer Older
  • Learn to ignore specific revisions
  • Timm Lauser's avatar
    Timm Lauser committed
    theory DAA_PnC_Anonymity_Credential_Installation
    begin
    
    /*
      Protocol:	DAA_PnC
      Properties:	Weaker version of PR2 - Anonymity of Credential Installation
    
    This Tamarin model is used to verify the privacy of the installation process
    for the Direct Anonymous Authentication (DAA) based privacy extentsion of the
    Plug and Charge (PnC) authentication system. The extension is described in the
    paper "Integrating Privacy into the Electric Vehicle Charging Architecture".
    
    It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by
    Original Authors:
    	Liqun Chen, Surrey Centre for Cyber Security, University of Surrey
    	Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey
    	Ralf Sasse, Department of Computer Science, ETH Zurich
    	Helen Treharne, Surrey Centre for Cyber Security, University of Surrey
    	Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey
    	Jorden Whitefield, Ericsson AB, Finland
    cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA
    
    
    time tamarin-prover interactive daa_pnc_anonymity_credential_installation.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_credential_installation.py +RTS -N8 -RTS
    
    time tamarin-prover daa_pnc_anonymity_credential_installation.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_credential_installation.py\
     --prove=diff_signatures_no_verify +RTS -N8 -RTS
    
    
    ==============================================================================
    summary of summaries:
    
    analyzed: daa_pnc_anonymity_credential_installation.spthy
    
      RHS :  diff_signatures_no_verify (exists-trace): verified (5 steps)
      LHS :  diff_signatures_no_verify (exists-trace): verified (5 steps)
      DiffLemma:  Observational_equivalence : verified (5200 steps)
    
    ==============================================================================
    
    real	37m11,516s
    user	102m59,471s
    sys	81m59,863s
    
    */
    
    builtins:   asymmetric-encryption, symmetric-encryption, signing//, diffie-hellman//, multiset
    
    functions:  MAC/2, KDF_EK/1,KDF_a/3, KDF_e/4, multp/2, plus/2, //len16/1, 
                 H_SHA256/1, H_n_8/8, curlyK/1, RB/2, RD/2, PkX/2, PkY/2
    			 
    
    // Protocol Restrictions (Axioms)
    
    restriction equality: 	     "All #i    x y    .  Eq( x, y ) @ i ==> x = y"
    
    				
    //the 'Issuer' should only be initialised once
    restriction single_issuer_single_init:
    	"All #i #j . (Issuer_Init() @ i & Issuer_Init() @ j) ==> (#i=#j)"
    
    // Initialisation of the eMSP (the DAA Issuer) and the CCH (acting as CPS)
    // we do not allow key reveals for the issuer
    rule Issuer_and_CPS_Init:
    		let 
    			I=$Iss
    			pkX=PkX(~x,'P2')
    			pkY=PkY(~y,'P2')
    		in
    		[ Fr(~x)
    			, Fr(~y)
    			, Fr(~cps)
    		]
    		--[Issuer_Init()
    			, OnlyOnce('Issuer_Init')]->
    		[ !Ltk(I,~x, ~y)
    			, !Pk(I, pkX,pkY)
    			, Out(<pkX,pkY>)
    			, !LtkCPS($CPS_I,~cps)
    			, !PkCPS($CPS_I, pk(~cps))
    			, Out(pk(~cps))
    		]
    
    /*
    In this model, we generate two EV credential requests. One from EV1/TPM1 with the public endorsement key pke1
    and one from EV2/TPM2 with the public endorsement key pke2. The eMSP then issues credentials for one of these requests.
    The adversary obtains the credential request mesage, the issued credential, and the public information of TPM1 and TPM2.
    The question is: Can the adversary decide whether the credentials have been issued for TPM1 or TPM2?
    */
    rule Generate_TPM_DAA_CERTIFY:
    	let
    		//inputs from Issuer PK
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		
    		//TPM1 details		
    		e1=KDF_EK(~TPM_EK_Seed1)
    		pke1=pk(e1)
    		E_PD1=<'EK_public_data',pke1>
    		PC_PD1=<'PC_public_data',pk(~pc1)>
    		Q1=multp(~f1, 'P1')
    		Q_PD1=<'DAA_public_data', Q1>
    
    		m1=<pke1,pk(~pc1), Q_PD1, ~res_n1, 'join_Issuer_1'>
    		signed_m1=H_SHA256(<m1, pk(cps), n1>) // In(n)
    		sig_over_m1=sign(signed_m1,~pc1)
    
    		m_out1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		//TPM2 details		
    		e2=KDF_EK(~TPM_EK_Seed2)
    		pke2=pk(e2)
    		E_PD2=<'EK_public_data',pke2>
    		PC_PD2=<'PC_public_data',pk(~pc2)>
    		Q2=multp(~f2, 'P1')
    		Q_PD2=<'DAA_public_data', Q2>
    
    		m2=<pke2,pk(~pc2), Q_PD2, ~res_n2, 'join_Issuer_1'>
    		signed_m2=H_SHA256(<m2, pk(cps), n2>)
    		sig_over_m2=sign(signed_m2,~pc2)
    
    		m_out2=aenc(<sig_over_m2,m2>,pk(cps))
    		
    		// Difference property: The adversary cannot distinguish whether the
    		// credential request was generated with TPM1 or TPM2
    		CERT_REQ_DIFF=diff(<'req1', m_out1, n1>,
    						   <'req2', m_out2, n2>)
      in
            [	//Issuer details
    			!Pk(I,pkX,pkY)				//the issuer's public key
    			, !PkCPS(CPS_I, pk(cps))		//the issuer's public key
    
    			, In(n1)
    			, In(n2)
    			
    			, Fr(~TPM_EK_Seed1)
    			, Fr(~pc1)
    			, Fr(~f1)
    			, Fr(~res_n1)
    
    			, Fr(~TPM_EK_Seed2)
    			, Fr(~pc2)
    			, Fr(~f2)
    			, Fr(~res_n2)
          ]
        --[	CreateSigmas(), 
    		OnlyOnce( 'SIGN' )
    	]->	
    	 [
    		  CertReq(CERT_REQ_DIFF)
    		, Out(<'FirstTPM', pke1, PC_PD1, Q_PD1>)
    		, Out(<'SecondTPM', pke2, PC_PD2, Q_PD2>) 
    	 ]
    
    // This rule combines the role of the CPS and eMSP in the credential issuing process
    // First, the CPS decrypts and validates the request and then the eMSP generates the
    // DAA credential for the request
    rule Issuer_Issue_Credentials:
    	let 
    		//inputs
    		Q=multp(f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    		m=<pke,pk(pc), Q_PD, res_n,'join_Issuer_1'>
    
    		signed_m=H_SHA256(<m, pk(~cps), n>)
    		m_in=aenc(<sig,m>,pk(~cps))
    
    		CERT_REQ_DIFF=<req, m_in, n>
    
    		//inputs from Issuer PK
    		pkX=PkX(~x,'P2')
    		pkY=PkY(~y,'P2')
    				
    		//new values to be calculated
    		A=multp(~r,'P1')
    		B=multp(~y,A)
    		C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q))
    		D=multp(multp(~r,~y),Q)
    		
    		R_B=RB(~l,'P1')
    		R_D=RD(~l,Q)
    		
    		u=H_n_8('P1', Q, R_B, R_D, A, B, C, D)
    		j=plus(~l,multp(multp(~y,~r),u))
    		
    		// We use RSA instead of ECDHE keys to keep the model simple
    		s_2_hat=aenc(~s_2_dh, pke) //TODO
    		s_2_temp=~s_2_dh
    
    		s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke)		
    		Q_N=<'SHA256',H_SHA256(Q_PD)>			//the name of the DAA key
    		k_e=KDF_a(s_2,'STORAGE',Q_N)				
    		k_h=KDF_a(s_2,'INTEGRITY','NULL')
    		curlyK_2=curlyK(~K_2)
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		//curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h) //TODO len16
    		curlyH=MAC(<curlyK_2_hat, Q_N>,k_h)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    
    		seed_3_enc=aenc(~seed_3_dh, pke) //TODO
    		seed_3_temp=~seed_3_dh
    
    		seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke)		
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid>
    		sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>)
    		sk_PD=<'SK_EMAID_public_data', sk_unique>
    		sk_N=<'SHA256',H_SHA256(sk_PD)>
    		sk_k_e=KDF_a(seed_3,'STORAGE',sk_N)				
    		sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL')
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    
    		EMSP_Cert=<I,pkX,pkY>
    
    		//TODO len16
    		//m_out=<EMSP_Cert, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		sig_m=sign(H_SHA256(m_out),~cps)	
    	in
         [ CertReq(CERT_REQ_DIFF)
    		, !Pk(I,pkX,pkY)
    		, !Ltk(I,~x,~y)
    		, Fr(~r)
    		, Fr(~l)
    		, Fr(~s_2_dh)
    		, Fr(~K_2)
    		, Fr(~sk_emaid), Fr(~seed_3_dh), Fr(~obfuscationValue) // for import
    		, !PkCPS(CPS_I,pk(~cps))
    		, !LtkCPS(CPS_I, ~cps)
    	 ] 
    	 --[ Eq(verify(sig,signed_m,pk(pc)), true)	
    	 	, CreateRes(req)
    	 	, CreateResSig(sig_m)
    		, OnlyOnce(<'Issuer_Verify_Challenge', req>)
    		]->
    	 [ CertRes(req, m_in, m_out, sig_m)
    	 ]	
    
    // The CPS receives the credential responses from the eMSP
    // either from TPM1 or TPM2 (diff property)
    // The CPS then signs the response and forwards it to the
    // CPO (the adversary in this model) together with the original credential request
    rule Two_Res:
    	let
    		m1=<pke1,pk(~pc1), Q_PD1, res_n1, 'join_Issuer_1'>
    		m_in1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		m_out1=<EMSP_Cert1, curlyH1, curlyK_2_hat1, s_2_hat1, C_hat1, sk_DUP1, res_n1, 'Host_CompleteJoin'>
    		sig_m1=sign(H_SHA256(m_out1),cps)
    	in
    	[
    		CertRes(req, m_in1, m_out1, sig_m1)
    		, !PkCPS(CPS_I,pk(cps))
    	]
    	--[ 
    		Eq(verify(sig_m1,H_SHA256(m_out1),pk(cps)), true)	
    		, Diff_Sigs()
    		, OnlyOnce('Two_Res')
    	]->
    	[ Out(<m_in1, m_out1, sig_m1>) ]
    
    
    lemma diff_signatures_no_verify: exists-trace
    "	Ex #t1 #t3 #t6 .
    		Issuer_Init() @ t1
    		& CreateSigmas() @ t3
    
    		& ( 
    			(Ex #k1 . (CreateRes('req1') @k1) )
    			|
    			(Ex #k1 . (CreateRes('req2') @k1) )
    		  ) 
    
    		& Diff_Sigs() @ t6
    		& #t1<#t3
    		& #t3<#t6
    		
    		//we had no key reveal
    		//& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1) 
    		
    		//restrict rules to only run once in a trace
    		& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
    "
    
    end