Newer
Older
theory DDA_PnC_Charge_Authorisation_offline
begin
/*
Protocol: DAA_PnC
Properties: SR3 - Secure Charge Authorisation (offline)
SR4 - Charge Data Authenticity (offline)
This Tamarin model is used to verify the security of the charge authorization
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
process for the Direct Anonymous Authentication (DAA) based privacy extentsion
of the Plug and Charge (PnC) authentication system. The extension is described
in the paper "Integrating Privacy into the Electric Vehicle Charging Architecture".
The model consists of the following actors:
Host/EV - Electric Vehicle
TPM - Trusted Platform Module used to secure the EVs private keys
Issuer - The e-mobility service provider (eMSP), corresponding to the Issuer role in the DAA protocol
CP - Charge Point
This model verifies the security requirement SR2: Secure Credential Installation
It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by
Original Authors:
Liqun Chen, Surrey Centre for Cyber Security, University of Surrey
Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey
Ralf Sasse, Department of Computer Science, ETH Zurich
Helen Treharne, Surrey Centre for Cyber Security, University of Surrey
Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey
Jorden Whitefield, Ericsson AB, Finland
cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA
time tamarin-prover daa_pnc_charge_authorisation_offline.spthy\
--heuristic=I --prove --quit-on-warning\
+RTS -N8 -RTS
==============================================================================
summary of summaries:
analyzed: daa_pnc_charge_authorisation_offline.spthy
source_of_key_reveal_sk (all-traces): verified (9 steps)
restriction_bind (all-traces): verified (4 steps)
restriction_one_host_per_tpm (all-traces): verified (12 steps)
restriction_one_tpm_per_host (all-traces): verified (10 steps)
restriction_pke_comes_from_tpm (all-traces): verified (8 steps)
correctness_verify_multiple_pkes (exists-trace): verified (30 steps)
correctness_verify_multiple_pkes_diff_I (exists-trace): verified (27 steps)
correctness_two_certs_same_credentials (exists-trace): verified (41 steps)
correctness_two_certs_different_credentials (exists-trace): verified (42 steps)
correctness_two_auths_same_ev_same_key (exists-trace): verified (102 steps)
correctness_two_auths_diff_ev_diff_key (exists-trace): verified (97 steps)
correctness_two_auths_same_ev_diff_key (exists-trace): verified (155 steps)
correctness_two_data (exists-trace): verified (47 steps)
correctness_credential_req (exists-trace): verified (29 steps)
correctness_charge_authorisation_req_1 (exists-trace): verified (42 steps)
correctness_charge_authorisation_req_2 (exists-trace): verified (58 steps)
correctness_charge_authorisation (exists-trace): verified (76 steps)
correctness_charge_data_authentication (exists-trace): verified (90 steps)
correctness_with_adv (exists-trace): verified (67 steps)
auth_aliveness_issuer_very_weak (all-traces): verified (3 steps)
auth_aliveness_issuer (all-traces): verified (3 steps)
auth_aliveness_host (all-traces): verified (5 steps)
auth_weak_agreement_host (all-traces): verified (11 steps)
auth_non_injective_agreement_host_issuer (all-traces): verified (11 steps)
auth_injective_agreement_host_issuer (all-traces): verified (15 steps)
auth_secrecy_cre (all-traces): verified (24 steps)
auth_secrecy_emaid (all-traces): verified (17 steps)
auth_aliveness_charge (all-traces): verified (35 steps)
auth_weak_agreement_charge (all-traces): verified (112 steps)
auth_non_injective_agreement_charge (all-traces): verified (112 steps)
auth_injective_agreement_charge (all-traces): verified (118 steps)
auth_aliveness_charge_data (all-traces): verified (110 steps)
auth_weak_agreement_charge_data (all-traces): verified (110 steps)
auth_non_injective_agreement_charge_data (all-traces): verified (146 steps)
auth_injective_agreement_charge_data (all-traces): verified (154 steps)
SP3_Unforgeability_Off (all-traces): verified (100 steps)
test_auth_non_injective_agreement_CP_sessKey (all-traces): verified (46 steps)
test_auth_non_injective_agreement_CP (all-traces): verified (47 steps)
test_auth_injective_agreement_CP (all-traces): verified (133 steps)
test_new_test_CP_sessKey (all-traces): verified (88 steps)
test_key_tpm_binding_test2 (all-traces): verified (87 steps)
test_new_auth_non_injective_agreement_CP_data (all-traces): verified (105 steps)
test_new_auth_injective_agreement_CP_data (all-traces): verified (111 steps)
test_auth_injective_agreement_CP_test2 (all-traces): verified (9 steps)
test_test1 (all-traces): verified (45 steps)
test_test2 (all-traces): verified (100 steps)
test_test (all-traces): verified (84 steps)
==============================================================================
real 25m16,817s
user 131m36,396s
sys 38m37,382s
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
*/
builtins: symmetric-encryption, signing, diffie-hellman, hashing
functions: accept/0, MAC/2, KDF_AES/1, KDF_EK/1,KDF_a/3, KDF_e/4, QName/2, certData/2, DAAKeyID/1,
multp/2, plus/2, minus/2, len16/1,
H_SHA256/1, H_k_1/1, H_k_2/2, H_k_4/4, H_k_7/7, H_n_2/2, H_n_2/2, H_n_8/8, H_6/1,
curlyK/1, E/2, E_S/2, L_J/2, RB/2, RD/2,
calcE/1,
calcE_S_cert/4, calcL_J_cert/4,
calcRB/1, calcRD/1, Nonce/1,
PkX/2, PkY/2, verifyCre1/4, verifyCre2/5,verifyCre3/4,verifyCre4/5,
BSN/1, F1/1, F2/1, H_p/1,PointG1/2, Message/1, Q_K/1, certify/1, publicData/1
equations:
calcE(
minus(
multp(
plus(
r_cv,
multp(
H_n_2(n_J, H_k_1(H_k_4(P1,Q,E(r_cv,P1),str))),
f
)
),
P1
),
multp(
H_n_2(n_J, H_k_1(H_k_4(P1, Q, E(r_cv,P1), str))),
multp(
f,
P1
)
)
)
) = E(r_cv,P1)
,
calcRB(
minus(
multp(
plus(l,multp(multp(y,r),H_n_8(P1, multp(f,P1), RB(l,P1), RD(l,multp(f,P1)),
multp(r,P1),
multp(y,multp(r,P1)),
plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),Q)),
multp(multp(r,y),Q)
))),
P1),
multp(
H_n_8(P1, multp(f,P1), RB(l,P1), RD(l,multp(f,P1)),
multp(r,P1),
multp(y,multp(r,P1)),
plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),Q)),
multp(multp(r,y),Q)
),
multp(y,multp(r,P1))
)
)
)= RB(l,P1)
,
calcRD(
minus(
multp(plus(l,multp(multp(y,r),H_n_8(P1, multp(f, P1), RB(l,P1), RD(l,multp(f,P1)),
multp(r,P1),
multp(y,multp(r,P1)),
plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),Q)),
multp(multp(r,y),Q)
))),multp(f, P1)),
multp(H_n_8(P1, multp(f, P1), RB(l,P1), RD(l,multp(f,P1)),
multp(r,P1),
multp(y,multp(r,P1)),
plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),Q)),
multp(multp(r,y),Q)
), multp(multp(r,y),multp(f, P1)))
)
)=RD(l,multp(f,P1))
,
//calcL_J(s, J, h2, K) =sJ-h2K
// =(r_cv1+h2f)J-h2(fJ)
// =r_cv1 J
calcL_J_cert(
plus(r_cv1,multp(h2,f)), //s
PointG1(H_p(F1(bsn)),F2(bsn)), //J
H_n_2(n_C, H_k_2(small_c, H_6(certData(certificationData,pkCCsess_n)))), //h2
multp(f,J) //K
)
=
L_J(r_cv1, PointG1(H_p(F1(bsn)),F2(bsn)))
,
//calcE_S_cert(small_s, S, h2, W) =sS-h2W
// =(r_cv1+h2f)lyrP1-h2(lryfP1)
// =r_cv1lyrP1
calcE_S_cert(plus(r_cv1,multp(H_n_2(n_C, H_k_2(small_c, H_6(certData(certificationData,pkCCsess_n)))),f)), //small_s
H_n_2(n_C, H_k_2(small_c, H_6(certData(certificationData,pkCCsess_n)))), //h2
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
E_S(r_cv1, multp(l,multp(y,multp(r,P1)))) //E_S(r_cv1,S)
,
verifyCre1(
multp(r,P1), //A
PkY(y,P2), //Y
multp(y,multp(r,P1)),//B
P2)=accept
,
verifyCre2(
multp(r,P1), //A
multp(multp(~r,y),multp(f,P1)), //D
PkX(x,P2), //X
plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),multp(f,P1))),//C
P2)=accept
,
verifyCre3(
multp(l,multp(r,P1)), //R=lA=l(rP1)
PkY(y,P2), //Y
multp(l,multp(y,multp(r,P1))), //S=lB=l(y(A))
P2)=accept
,
verifyCre4(
multp(l,multp(r,P1)), //R=lA=l(rP1)
multp(l,multp(multp(r,y),multp(f,P1))), //W=l(D)=l(ryQ)=l(ry(fP1))
PkX(x,P2), //X
multp(l,plus(multp(x,multp(r,P1)),multp(multp(multp(r,x),y),multp(f,P1)))), //T=lC=l(xA+rxyQ)=l(xrP1+rxyfP1)
P2)=accept
//=========================================
// Protocol Restrictions (Axioms)
//=========================================
restriction equality: "All #i x y . Eq( x, y ) @ i ==> x = y"
// each authorisation nonce i_x is only accepted once
restriction only_once_ix: "All L R i_x #i #j . (OnlyOnce_i_x(L, R, i_x) @ i & OnlyOnce_i_x(L, R, i_x)@ j) ==> (#i=#j)"
//Modification: removed restriction for single issuer initialisation
//each issuer should only be initialised once
restriction issuer_single_init:
"All I #i #j . (Issuer_Init(I) @ i & Issuer_Init(I) @ j) ==> (#i=#j)"
//each charge point should only be initialised once
restriction cp_single_init:
"All CP #i #j . (CP_Init(CP) @ i & CP_Init(CP) @ j) ==> (#i=#j)"
//a host should only initialise itself once
restriction host_single_init:
"All Host #i #j . ((Host_Init(Host)@i & Host_Init(Host)@j) ==> (#i=#j))"
//a TPM should only be initialised once (and hence there is only one aes key and one TPM_EK_SEED):
restriction tpm_single_init:
"All PS #i #j. ((TPM_Init(PS)@i & TPM_Init(PS)@j) ==> (#i=#j))"
//a host and a TPM cannot be initialised with the same identity
//Modification: adjusted restrictions for ID uniqueness to new entity definitions
restriction no_shared_id_between_tpm_host:
"All Ent1 Ent2 #i #j .
(Host_Init(Ent1) @ i & TPM_Init(Ent2) @ j)
==>
(not(Ent1=Ent2))"
//an issuer and a CP cannot be initialised with the same identity
restriction no_shared_id_between_issuer_cp:
"All Ent1 Ent2 #i #j .
(Issuer_Init(Ent1) @ i & CP_Init(Ent2) @ j)
==>
(not(Ent1=Ent2))"
//When initialized, a host, tpm and issuer must have different identities
restriction no_shared_id_between_tpm_host_issuer:
"All Ent1 Ent2 Ent3 #i #j #k.
(Host_Init(Ent1) @ i & TPM_Init(Ent2) @ j & Issuer_Init(Ent3) @ k )
==>
(not(Ent1=Ent2) & not (Ent1=Ent3)
& not (Ent2=Ent3) )"
//When initialized, a host, tpm and issuer, and CP must have different identities
restriction no_shared_id_between_tpm_host_issuer_cp:
"All Ent1 Ent2 Ent3 Ent4 #i #j #k #l.
(Host_Init(Ent1) @ i & TPM_Init(Ent2) @ j & Issuer_Init(Ent3) @ k & CP_Init(Ent4) @ l)
==>
(not(Ent1=Ent2) & not (Ent1=Ent3) & not (Ent1=Ent4)
& not (Ent2=Ent3) & not (Ent2=Ent4)
& not (Ent3=Ent4))"
//=========================================
// Secure Channel Rules
//=========================================
/*
We need a secure channel between the TPM aka the Principal Signer (PS)
and its host aka the Assistant Signer (AS). We refer to the combination
of a PS and AS as a Platform.
*/
/*
Communication between the Host or Assistant Signer (AS) and the TPM
or Principal Signer (PS) is done over a 'Secure Channel'. This means
that an adversary can neither modify nor learn messages that are
sent over the channel. Sec( A, B, x ) is a linear fact modelling
that the adversary cannot replay on this channel. Secure channels
have the property of being both confidential and authentic.
Communication between the AS and PS is constrained by the channel
invariant !F_Paired, such that two arbitrary roles cannot communicate
over this channel.
*/
rule ChanOut_S [colour=ffffff]:
[ Out_S( $A, $B, x ), !F_Paired( $A, $B ) ]
--[ ChanOut_S( $A, $B, x ) ]->
[ Sec( $A, $B, x ) ]
rule ChanIn_S [colour=ffffff]:
[ Sec( $A, $B, x ) ]
--[ ChanIn_S( $A, $B, x ) ]->
[ In_S( $A, $B, x ) ]
/* Modification: Added Secure Channel rules for backend communication
Secure TLS Channel between backend actors.
Channel is confidential and authentic.
*/
rule ChanOut_S_Backend:
[ Out_S_B($A,$B,x) ]
--[ ChanOut_S_B($A,$B,x) ]->
[ SecB($A,$B,x) ]
rule ChanIn_S_Backend:
[ SecB($A,$B,x) ]
--[ ChanIn_S_B($A,$B,x) ]->
[ In_S_B($A,$B,x) ]
rule ChanOut_A:
[ Out_A($A,$B,x) ]
--[ ChanOut_A($A,$B,x) ]->
[ Auth($A,x), Out(<$A,$B,x>) ]
rule ChanIn_A:
[ Auth($A,x), In($B) ]
--[ ChanIn_A($A,$B,x) ]->
[ In_A($A,$B,x) ]
rule ChanIn_A_ADV1:
[ In(<$A,$B,x>) ]
--[ ChanIn_A($A,$B,x)
, KeyReveal('TLS_KeyReveal', $A)
]->
[ In_A($A,$B,x) ]
rule ChanIn_A_ADV2:
[ In(<$A,$B,x>) ]
--[ ChanIn_A($A,$B,x)
, KeyReveal('TLS_KeyReveal', $B)
]->
[ In_A($A,$B,x) ]
//=========================================
// Protocol Setup and Actor Initialisation
//=========================================
/*
Issuer set-up:
Modification: Allow multiple issuer (eMSP) set-ups
*/
rule Issuer_Init:
let
pkX=PkX(~x,'P2')
pkY=PkY(~y,'P2')
in
[Fr(~x),
Fr(~y)]
--[Issuer_Init($I)
, Issuer_Init2($I, ~x, ~y)
, OnlyOnce('Issuer_Init')]->
[ !Ltk($I,~x, ~y)
, !Pk($I, pkX,pkY)
, Out(<pkX,pkY>)
, !Issuer_Initialised($I)
]
// simple key reveal rule for the issuer's secret key pair
rule Issuer_KeyReveal:
[!Ltk($I, ~x, ~y)]
--[KeyReveal('Issuer_KeyReveal', $I)]->
[Out(<~x,~y>)]
// Modification: Added CP set-up
rule CP_Init:
[]
--[CP_Init($CP)
, OnlyOnce('CP_Init')]->
[ !CP_Initialised($CP) ]
/*
Platform set-up:
For a platform we need a TPM (the principal signer) and a Host (the assistant signer)
before binding them together in a platform.
Modification: Removed need for the host to know the issuer before the join.
*/
rule TPM_INIT:
let
//!Assumption that the aes key is derived by a KDF_AES key derivation function
aes_key=KDF_AES(~TPM_AES_Seed)
e=KDF_EK(~TPM_EK_Seed)
pke='g'^e //for key reveal conditions
in
[Fr(~TPM_AES_Seed),
Fr(~TPM_EK_Seed)]
--[TPM_Init($PS)
, OnlyOnce('TPM_INIT')]->
[!TPM_AES_Key($PS, aes_key),
TPM_AES_Key2($PS, aes_key, pke),
TPM_EK_SEED($PS,~TPM_EK_Seed),
TPM_Initialised($PS)]
//simple rule to allow the TPM's aes key to leak
rule TPM_AESReveal:
[TPM_AES_Key2(PS, aes_key, pke)]
--[KeyReveal('TPM_AESReveal', PS)
, KeyReveal('PKE_AESReveal', pke)]->
[Out(aes_key)]
rule Host_Init:
[]
--[Host_Init($AS)
, OnlyOnce('Host_Init')]->
[Host_Initialised($AS)]
//This rule binds an $PS and an $AS to one another.
rule Platform_Setup:
[ TPM_Initialised($PS)
, Host_Initialised($AS)
]
//Action label used to ensure there is a one-to-one correspondence between AS and PS
--[ Bind($PS,$AS)
,OnlyOnce('Platform_Setup')
]->
[ Out_S($AS, $PS, < 'createPrimary'>)
, !F_Paired($AS,$PS)
, !F_Paired($PS,$AS)
]
//The TPM executes this in response to a request by the host
//Note this should only be executed by a TPM once!
rule TPM2_CreatePrimary:
let
e=KDF_EK(~TPM_EK_Seed)
pke='g'^e
E_PD=<'EK_public_data',pke>
in
[ In_S($AS, $PS, < 'createPrimary'>)
, TPM_EK_SEED($PS,~TPM_EK_Seed)]
--[ TPM2_EK_Created($PS, $AS, pke)
, TPM2_EK_Created2(e, pke)
, OnlyOnce('TPM2_CreatePrimary')
]->
[Out_S($PS,$AS, < E_PD, 'returnEK'>),
!TPM_ENDORSEMENT_SK($PS, e, pke),
!TPM_ENDORSEMENT_PK($PS,E_PD),
Out(pke)]
//simple rule to reveal the TPM's endorsement key
rule TPM_EKReveal:
let
e=KDF_EK(~TPM_EK_Seed)
in
[!TPM_ENDORSEMENT_SK(PS, e, pke)]
--[ KeyReveal('TPM_EKReveal_tpm', PS)
, KeyReveal('TPM_EKReveal_pke', pke)
]->
[Out(e)]
//The Host should store the public endorsement key
rule Host_Store_EK:
let
E_PD=<'EK_public_data', pke>
in
[ In_S($PS,$AS, < E_PD, 'returnEK'>) ]
--[ Store_EK($PS, $AS)
, OnlyOnce('Host_Store_EK')
]->
[
Out_S($AS,$PS, < pke, 'createPCKey'>),
Host_State_01( $PS, $AS, pke )]
/*
Modification: Added the generation of the provisioning key pair.
The rule is designed based on the existing TPM2_CreatePrimary and TPM2_Create rules
*/
rule TPM2_CreatePC:
let
PC_PD=<'PC_public_data',pk(~pc)>
PC_SD=senc(~pc,aes_key)
in
[ In_S($AS, $PS, < pke, 'createPCKey'>)
, !TPM_AES_Key($PS, aes_key)
, Fr(~pc) //pc secret key
]
--[ TPM2_PC_Created($PS, $AS)
, DerivePCKey($PS, $AS, pke, ~pc)
, OnlyOnce('TPM2_CreatePC')
]->
[
Out_S($PS, $AS,< PC_SD,PC_PD, 'returnPCKey'>),
!TPM_PC_SK($PS, pke, ~pc),
Out(pk(~pc))
]
//simple rule to reveal the TPM's provisioning key
rule TPM_PCReveal:
[!TPM_PC_SK(PS, pke, ~pc)]
--[ KeyReveal('TPM_PCReveal_tpm', PS)
, KeyReveal('TPM_PCReveal_pke', pke)
]->
[Out(~pc)]
//The Host should store the public provisioning key
rule Host_Store_PC_pre:
let
PC_PD=<'PC_public_data',pk(~pc)>
in
[ In_S($PS, $AS,< PC_SD,PC_PD, 'returnPCKey'>),
Host_State_01( $PS, $AS, pke ) ]
--[ OnlyOnce('Host_Store_PC_pre')
]->
[ !Host_Store_PC_pre($PS, $AS, pke, PC_SD,PC_PD)
//, !RegisterPC(PC_PD)
]
rule Host_Store_PC:
let
PC_PD=<'PC_public_data',pk(~pc)>
in
[ !Host_Store_PC_pre($PS, $AS, pke, PC_SD,PC_PD) ]
--[ Store_PC($PS, $AS)
, OnlyOnce('Host_Store_PC')
]->
[Out_S($AS,$PS, < pke, 'createDAAKey'>),
Host_State_02( $PS, $AS, pke, PC_PD, PC_SD )]
//=====================================================================
// Credential Installation
//=====================================================================
// Simplified Credential installation without Certificate Provisioning
// Service (CPS)
/*
This rule will create a DAA key
Note that unlike the TPM2_CreatePrimary rule, this rule can be executed
multiple times resulting in a new DAA key
This is obviously not sensible but allowed.
*/
rule TPM2_CreateDAA:
let
Q=multp(~f, 'P1')
CCdaa_PD=<'DAA_public_data', Q>
CCdaa_SD=senc(~f,aes_key)
in
[In_S($AS, $PS, < pke, 'createDAAKey'>)
, !TPM_AES_Key($PS, aes_key)
, Fr(~f) //our secret key
]
--[ TPM2_DAA_Created($PS, $AS)
, DeriveDAAKey($PS, $AS, pke, ~f)
, OnlyOnce('TPM2_CreateDAA')
]->
[ Out_S($PS, $AS,< CCdaa_SD,CCdaa_PD, 'returnDAAKey'>),
!TPM_DAA_SK($PS, pke, ~f),
Out(Q)
]
//simpe rule to leak the DAA key:
rule TPM_DAAReveal:
[!TPM_DAA_SK(PS, pke, ~f)]
--[ KeyReveal('TPM_DAAReveal_tpm', PS)
, KeyReveal('TPM_DAAReveal_pke', pke)
, KeyReveal('TPM_DAAReveal_f', ~f)
]->
[Out(~f)]
/*
The host needs to store the keys on behalf of the TPM as it has
limited memory. The host then builds the credential request data CertReq and
instructs the TPM to sign this data with the private provisioning key PC
Modification: Included the generation and encryption of the EV's CertReq
*/
rule Host_Store_DAA:
let
PC_PD=<'PC_public_data',pk(~pc)>
m=<pke,pk(~pc), CCdaa_PD, 'join_Issuer_1'>
[In_S($PS, $AS, < CCdaa_SD,CCdaa_PD, 'returnDAAKey'>)
, Host_State_02( $PS, $AS, pke, PC_PD, PC_SD )
]
--[
PlatformSendKeys($PS, $AS, pke, CCdaa_PD, pk(~pc))
, Alive($AS)
, Role('Platform')
, Store_DAA($PS, $AS)
, OnlyOnce('Host_Store_Keys')
]->
[
Out_S_B($AS, $I, <m, 'CPS_Fwd_Req'>) //CPS_I is included as CS and CSO know chosen CPS
, Host_State_05($PS, $AS, $I, pke, CCdaa_PD, CCdaa_SD)
]
//Issuer: verify the curlyK and the signature before issuing the proper credentials
//Modification: Changed to model new behavior of eMSP issuer, i.e., interaction with CPS and inclusion of EMSP_Cert.
rule Issuer_Issue_Credentials:
let
//inputs
Q=multp(f, 'P1')
CCdaa_PD=<'DAA_public_data', Q>
m=<pke,pk(pc), CCdaa_PD, 'join_Issuer_1'>
//inputs from Issuer PK
pkX=PkX(~x,'P2')
pkY=PkY(~y,'P2')
//new values to be calculated
A=multp(~r,'P1')
B=multp(~y,A)
C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q))
D=multp(multp(~r,~y),Q)
R_B=RB(~l,'P1')
R_D=RD(~l,Q)
u=H_n_8('P1', Q, R_B, R_D, A, B, C, D)
j=plus(~l,multp(multp(~y,~r),u))
s_2_hat='g'^~s_2_dh //pub ecdhe key
s_2_temp=pke^~s_2_dh //Z
s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke)
Q_N=<'SHA256',H_SHA256(CCdaa_PD)> //the name of the DAA key
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
k_e=KDF_a(s_2,'STORAGE',Q_N)
k_h=KDF_a(s_2,'INTEGRITY','NULL')
curlyK_2=curlyK(~K_2)
curlyK_2_hat=senc(curlyK_2,k_e)
curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h)
C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
// for import; change rnd seed to ecdh seed?
seed_3_enc='g'^~seed_3_dh //pub ecdhe key
seed_3_temp=pke^~seed_3_dh //Z
seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke)
sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid>
sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>)
sk_PD=<'SK_EMAID_public_data', sk_unique>
sk_N=<'SHA256',H_SHA256(sk_PD)>
sk_k_e=KDF_a(seed_3,'STORAGE',sk_N)
sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL')
sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h)
sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
EMSP_Cert=<I,pkX,pkY>
m_out=<EMSP_Cert, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, C_hat, sk_DUP, 'Host_CompleteJoin'>
in
[ In_S_B($AS, I, <m, 'CPS_Fwd_Req'>)
, !Pk(I,pkX,pkY)
, !Ltk(I,~x,~y)
, Fr(~r)
, Fr(~l)
, Fr(~s_2_dh)
, Fr(~K_2)
, Fr(~sk_emaid)
, Fr(~seed_3_dh)
, Fr(~obfuscationValue) // for import
]
--[ Running(I, pke, <A, B, C, D>)
, Alive(I) //the issuer is "alive" in the protocol here
, Honest ( I )
, Honest ( pke )
, Check_Ek(pke)
, IssuerReceivedKeys(I, pke, pk(pc), CCdaa_PD)
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
, IssuerCertDAAKey(I, pke, f)
, Secret_EMAID(I, pke, ~sk_emaid)
, Secret_Cred(I, pke, <A, B, C, D>)
, OnlyOnce('Issuer_Verify_Challenge')
]->
[Out_S_B(I, $AS, m_out)
, !Issuer_EMAID_SK(I, pke, ~sk_emaid)
, Out(sk_PD)
]
//Modification: added simpe rule to leak the EMAID secret key:
rule Issuer_EMAID_Reveal:
[!Issuer_EMAID_SK(I, pke, sk_emaid)]
--[
KeyReveal('Issuer_EMAID_Reveal', I),
KeyReveal('Issuer_EMAID_Reveal_SK', sk_emaid)
]->
[Out(sk_emaid)]
//The host verifies the signature and freshness of the received credential response,
// asking the TPM to decrypt and import the EMAID secret key (contained in sk_DUP)
// as well as the DAA credential
//Modification: Added verification of the CPS' signature
rule Host_Passthrough_2:
let
EMSP_Cert=<$I,pkX,pkY>
sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
m=<EMSP_Cert, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, C_hat, sk_DUP, 'Host_CompleteJoin'>
in
[ In_S_B($I, $AS, m)
, Host_State_05($PS, $AS, $I, pke, CCdaa_PD, CCdaa_SD)
]
--[ Passthrough_ActivateCred2($PS, $AS)
, OnlyOnce('Host_Passthrough_2')
]->
[ Out_S($AS,$PS,< sk_DUP, 'TPM2_Import'>)
, Out_S($AS,$PS,< CCdaa_SD, CCdaa_PD, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, 'TPM2_ActivateCredentials_2'>)
, Host_State_06($PS, $AS, pke, CCdaa_SD, CCdaa_PD, C_hat, sk_PD, EMSP_Cert) //activateData
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
]
//The TPM decrypts the EMAID secret key and returns it to the host/EV
//Modification: Added TPM2_Import
rule TPM2_Import:
let
sk_unique=H_SHA256(<obfuscationValue, sk_emaid>)
sk_PD=<'SK_EMAID_public_data', sk_unique>
sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', obfuscationValue, sk_emaid>
sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
seed_3_rec_temp=seed_3_enc^e
seed_3_rec=KDF_e(seed_3_rec_temp,'DUPLICATE',seed_3_enc,pke)
sk_N_rec=<'SHA256',H_SHA256(sk_PD)>
sk_k_e_1=KDF_a(seed_3_rec,'STORAGE',sk_N_rec)
sk_k_h_1=KDF_a(seed_3_rec,'INTEGRITY','NULL')
sk_SENSITIVE_hmac_1=MAC(<sk_SENSITIVE_enc, sk_N_rec>,sk_k_h_1)
sk_SENSITIVE_rec=sdec(sk_SENSITIVE_enc,sk_k_e_1)
sk_SD=senc(sk_SENSITIVE_rec,aes_key)
in
[ In_S($AS,$PS,< sk_DUP, 'TPM2_Import'>)
, !TPM_AES_Key($PS, aes_key)
, !TPM_ENDORSEMENT_SK($PS,e, pke)
]
--[
Eq(sk_SENSITIVE_hmac_1,sk_SENSITIVE_hmac)
, Eq(sk_k_e, sk_k_e_1)
, EMAIDkey_Imported($PS, $AS)
, EMAIDkey_Imported2($PS, $AS, sk_emaid)
, Secret_Imported(pke, sk_emaid)
, OnlyOnce('TPM2_Import')
]->
[ Out_S($PS,$AS, < sk_PD, sk_SD, 'ret_TPM2_Import'>)
, !TPM_EMAID_SK($PS, pke, sk_emaid)
]
//Modification: added simpe rule to leak the EMAID secret key:
rule TPM_EMAID_Reveal:
[!TPM_EMAID_SK($PS, pke, sk_emaid)]
--[
KeyReveal('TPM_EMAID_Reveal', $PS)
, KeyReveal('PKE_EMAID_Reveal', pke)
, KeyRevealSK(sk_emaid)
]->
[Out(sk_emaid)]
//TPM decrypts DAA credential and returns them to host/EV
rule TPM2_ActivateCredential_2:
let
//unwrap the inputs where needed
curlyK_2_hat=senc(curlyK(K_2),k_e)
Q=multp(~f, 'P1')
//recompute
s_2_rec_temp=s_2_hat^e //retrieve s
s_2_rec=KDF_e(s_2_rec_temp,'IDENTITY',s_2_hat,pke)
Q_N_rec=<'SHA256',H_SHA256(CCdaa_PD)> //calculate Q_N_rec which should be the same as Q_N
k_e_1=KDF_a(s_2_rec,'STORAGE',Q_N_rec) //calculate k_e_1 which should be the same as k_e
k_h_1=KDF_a(s_2_rec,'INTEGRITY','NULL') //calculate k_h_1 which should be the same as k_h
curlyH_1=MAC(<len16(curlyK_2_hat),curlyK_2_hat,Q_N_rec>,k_h_1)
curlyK_2_rec=sdec(curlyK_2_hat,k_e_1)
in
[ In_S($AS,$PS,< CCdaa_SD, CCdaa_PD, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, 'TPM2_ActivateCredentials_2'>)
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
, !TPM_AES_Key($PS, aes_key)
, !TPM_ENDORSEMENT_SK($PS,e, pke)
]
--[
Eq(curlyH_1,curlyH)
, Eq(k_e, k_e_1)
, CurlyK2_recomputed($PS, $AS)
, OnlyOnce('TPM2_ActivateCredential_2')
]->
[ Out_S($PS,$AS, < curlyK_2_rec, 'ret_TPM2_ActivateCredentials_2'>) ]
//The host/EV receives the sk_emaid and the DAA credential and competes the credential installation
rule Host_JoinComplete:
let
//unwrap the inputs where needed
curlyK_2_rec=curlyK(K_2_rec)
//inputs from the issuer
pkX=PkX(x,'P2')
pkY=PkY(y,'P2')
EMSP_Cert=<I,pkX,pkY>
A=multp(r,'P1')
B=multp(y,A)
C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
D=multp(multp(r,y),Q)
//input from Host_State
Q=multp(~f, 'P1')
C_hat=senc(<A,B,C,D,u,j>,curlyK_2) //we decrypt these credentials by checking that curlyK_2_rec = curlyK_2
//recompute the hash
R_B_dash=calcRB(minus(multp(j,'P1'), multp(u,B)))
R_D_dash=calcRD(minus(multp(j,Q),multp(u,D)))
u_dash=H_n_8('P1',Q,R_B_dash,R_D_dash, A, B, C, D)
in
[ In_S($PS,$AS, < curlyK_2_rec, 'ret_TPM2_ActivateCredentials_2'>)
, In_S($PS,$AS, < sk_PD, sk_SD, 'ret_TPM2_Import'>)
, Host_State_06($PS, $AS, pke, CCdaa_SD, CCdaa_PD, C_hat, sk_PD, EMSP_Cert)
//, Host_State_07($PS, $AS, pke, CCdaa_PD, C_hat, sk_PD, sk_SD, EMSP_Cert)
]
--[
Eq(curlyK_2, curlyK_2_rec) //this allows C_hat to be decrypted
, Eq(u,u_dash)
, Eq(verifyCre1(A,pkY,B,'P2'),accept)
, Eq(verifyCre2(A,D,pkX,C,'P2'),accept)
, JoinCompleted($PS, $AS, pke)
, Commit(pke, I, <A, B, C, D>)
, Role ('Platform')
, Secret(pke, I, <A, B, C, D> )
, Honest ( $PS )
, Honest ( $AS )
, Honest ( pke )
, Honest ( I )
, Commit_Test(pke, I, ~f)
, OnlyOnce('Host_JoinComplete')
]->
[ !Host_Store_Credentials($PS, $AS, pke, EMSP_Cert, A, B, C, D, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD)
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
, Host_Org_Creds($PS, $AS, pke, A, B, C, D)
]
// The following rule allows a host to leak the credentials
rule Host_CredentialsReveal:
[Host_Org_Creds($PS, $AS, pke, A, B, C, D)]
--[ KeyReveal('Host_OrgCred_Reveal', $AS)
, KeyReveal('TPM_OrgCred_Reveal', $PS)
, KeyReveal('PKE_OrgCred_Reveal', pke)
]->
[Out(<A, B, C, D>)]
//=============================================================
// Credential Installation Completed
//=============================================================
//=============================================================
// Charge Authorisation
//=============================================================
rule CounterAdv:
[ In(i_x_t) ]
--[
CounterAdv(i_x_t)
, CertifyOnlyOnce('CounterAdv')
]->
[ !OutIX(i_x_t) ]
rule EMSP_CSO_Offline_Calc:
let
i_x=h(i_x_t)
tM_id=MAC(<'00', i_x>, ~sk_emaid)
M_id=h(tM_id) //id_ix
CPM_id=h(<M_id, $CP>)
tM_auth=h(<M_auth, ~nonce_ix>)
CPM_auth=h(tM_auth)
localAuth_ix=<CPM_id, ~nonce_ix, CPM_auth>
in
[ !OutIX(i_x_t)
, !Issuer_EMAID_SK(I, pke, ~sk_emaid)
, !CP_Initialised($CP)
, Fr(~nonce_ix)
]
--[ EMSP_Offline_Calc(I, pke, ~sk_emaid, i_x)
, EMSP_Offline_Calc2(I, $CP, pke, tM_auth)
, CertifyOnlyOnce('EMSP_Offline_Calc')
]->
[
Out_A(I, $CP, <localAuth_ix>)
]
rule CP_Start:
let
m=<$CP, ~sid, 'ISO_SID'>
localAuth_ix=<CPM_id, nonce_ix, CPM_auth>
localAuth=<I, CPM_id, nonce_ix, CPM_auth>
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
in
[ Fr(~sid)
, In_A(I, $CP, <localAuth_ix>)
, !CP_Initialised($CP)
]
--[
CP_Start($CP, ~sid)
, CertifyOnlyOnce('CP_Start')
]->
[Out(m)
, CP_State_00($CP, ~sid, localAuth)
]
//as Host we randomise the credentials
rule Host_Randomise_Credentials:
let
A=multp(r,'P1')
B=multp(y,A)
C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
D=multp(multp(r,y),Q)
bsn=BSN('bottom')
R=multp(~l,A)
S=multp(~l,B)
T=multp(~l,C)
W=multp(~l,D)
//note that F1 and F2 are assumed to be KDFs such that (H_p(s_2_bar),y_2) is a point in G1
s_2_bar=BSN('bottom')
y_2=BSN('bottom')
//J=PointG1(H_p(s_2_bar),y_2)
in
[
!Host_Store_Credentials($PS, $AS, pke, EMSP_Cert, A, B, C, D, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD)
, Fr(~l)
]
--[
RandomisedCredentials($PS, $AS, pke)
,CertifyOnlyOnce ('Host_Randomise_Credentials')
]->
[
//Out_S($AS,$PS,<s_2_bar,y_2,S, 'TPM2_Commit_rand'>)
//, Out_S($AS, $PS, <pke, 'createSessionKey'>)
!Host_State_08a( $PS, $AS, pke, bsn, R, S, T, W, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, s_2_bar, y_2)
, Host_Rnd_Creds($PS, $AS, pke, bsn, R, S, T, W)
]
// The following rule allows a host to leak the randomised credentials
rule Host_RandomCredentialsReveal:
[Host_Rnd_Creds($PS, $AS, pke, bsn, R, S, T, W)]
--[
KeyReveal('Host_RndCred_Reveal', $AS)
, KeyReveal('TPM_RndCred_Reveal', $PS)
, KeyReveal('PKE_RndCred_Reveal', pke)
]->
[Out(<bsn, R, S, T, W>)]
//as Host we randomise the credentials
rule Host_Randomise_Credentials2:
[
!Host_State_08a( $PS, $AS, pke, bsn, R, S, T, W, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, s_2_bar, y_2)
]
--[
RandomisedCredentials2($PS, $AS, pke)
,CertifyOnlyOnce ('Host_Randomise_Credentials2')
]->
[
Out_S($AS,$PS,<s_2_bar,y_2,S, 'TPM2_Commit_rand'>)
, Out_S($AS, $PS, <pke, 'createSessionKey'>)
, Host_State_08( $PS, $AS, pke, bsn, R, S, T, W, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
]
//as TPM we create some more elements
rule TPM2_Commit_2:
let
s_2_bar=BSN('bottom')
y_2=BSN('bottom')
// because s_2 and y_2 are both 'bottom
//J,K,L are also all 'bottom' and hence not needed
E=E_S(~r_cv1,S)
cv1val=Nonce(~cv1)
in
[ In_S($AS,$PS,< s_2_bar,y_2,S, 'TPM2_Commit_rand'>)
, !TPM_DAA_SK($PS, pke, ~f)
, Fr(~cv1)
, Fr(~r_cv1)
]
--[
TPMCommitRandomised($PS, $AS, pke)
,TPMCommitRandomised2($PS, $AS, pke, ~f)
, CertifyOnlyOnce('TPM2_Commit_2')
]->
[
Out_S($PS,$AS, < S, E,cv1val, 'ret_TPM2_Commit_rand'>)
, TPM_Commit_RCV1( $PS, $AS, pke, cv1val, ~r_cv1)
]
//simple helper rule which provides a Session key to the host
//this is done using the appropriate TPM APIs
rule TPM_Create_Session_Key:
let
kID=DAAKeyID(~keyID) // just a tracker to help Tamarin
pkCCsess=pk(~g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
CCsess_SD=senc(~g,aes_key)
in
[In_S($AS, $PS, < pke, 'createSessionKey'>)
, !TPM_AES_Key($PS, aes_key) //our AES key
, Fr(~g)
, Fr(~keyID) // id to help Tamarin pick the correct response later
]
--[
TPM2_SessionKey_Created($PS, $AS, kID, pkCCsess_PD)
, DeriveSessionKey($PS, $AS, ~g)
, CertifyOnlyOnce('Create_Session_Key')
]->
[
Out_S($PS, $AS,< kID, CCsess_SD,pkCCsess_PD, 'createdSessionKey'>)
, !TPM_Session_SK($PS, pke, pkCCsess, ~g)
]
//simpe rule to leak the Session secret key:
rule TPM_SessionKeyReveal:
[ !TPM_Session_SK($PS, pke, pkCCsess, ~g) ]
--[
KeyReveal('TPM_SessionReveal_tpm', $PS)
, KeyReveal('TPM_SessionReveal_pke', pke)
, KeyReveal('TPM_SessionReveal_pkCCsess', pkCCsess)
]->
[Out(~g)]
//simple rule that allows the credentials to be re-used:
rule Host_Store_Randomised_Credentials:
/*let
bsn=BSN('bottom')
R=multp(~l,A)
S=multp(~l,B)
T=multp(~l,C)
W=multp(~l,D)
in*/
[
In_S($PS,$AS, <S, E,cv1val, 'ret_TPM2_Commit_rand'>)
, In_S($PS, $AS,< kID, CCsess_SD,pkCCsess_PD, 'createdSessionKey'>)
, Host_State_08( $PS, $AS, pke, bsn, R, S, T, W, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD)
]
--[
StoreRandomisedCredentials($PS, $AS, pke)
, CertifyOnlyOnce('Host_Store_Randomised_Credentials')
]->
[ !Host_State_09_a($PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD,
sk_SD, kID, CCsess_SD,pkCCsess_PD )
]
// the host asks the TPM to certify the session key pair with its DAA credential
// and to compute an hmac over the authorization counter using the EMAID secret key
rule Host_Load_pkCCsess_For_Ceritfication:
let
EMSP_Cert=<I,pkX,pkY>
m=<$CP, sid, 'ISO_SID'>
//received values
cv1val=Nonce(cv1) //explicitly stating this prevents partial deconstructions
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
// CCsess_SD=senc(g,aes_key) //the host needs to store this on behalf of the TPM
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
kID=DAAKeyID(keyID)
//existing values
A=multp(r,'P1')
B=multp(y,A)
C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
D=multp(multp(r,y),Q)
bsn=BSN(basename)
R=multp(sl,A)
S=multp(sl,B)
T=multp(sl,C)
W=multp(sl,D)
//computed values
credData='CredentialData'
c=H_k_7(credData,R,S,T,W,E, sid)
i_x=h(i_x_t)
m_buffer=<'00',i_x>
in
[
!Host_State_09_a($PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD )
LoadKeyForCertification($PS, $AS, kID, pkCCsess_PD)
, LoadKeyForCertification2($PS, $AS, pkCCsess)
, CertifyOnlyOnce('Host_Load_pkCCsess_For_Ceritfication')
[ Out_S($AS, $PS, < pke, kID, CCsess_SD, pkCCsess_PD, c, cv1val, 'TPM2_Certify'>)
, Out_S($AS, $PS, < pke, sk_PD, sk_SD, m_buffer, 'TPM2_HMAC'>)
, Host_State_10( $PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, c, sid, $CP, i_x )]
//TPM: receives key, c, cv1 and certifies the Session key with the DAA credential
rule TPM2_Load_And_Certify:
let
CCsess_SD=senc(~g,aes_key) //loaded but not used as such
kID=DAAKeyID(keyID) //only needed to keep track of multiple calls
pkCCsess=pk(~g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
pkCCsess_n=QName('SHA256',H_SHA256(pkCCsess_PD))
curlyA=certData('certificationData',pkCCsess_n)
credData='CredentialData'
c=H_k_7(credData,R,S,T,W,E, sid)
h1=H_k_2(c, H_6(curlyA))
n_C=Nonce(~rnd_n_C)
h2=H_n_2(n_C, h1)
small_s=plus(~r_cv1, multp(h2, ~f))
in
[
In_S($AS, $PS, < pke, kID, CCsess_SD, pkCCsess_PD, c, cv1val_in, 'TPM2_Certify'>)
, !TPM_DAA_SK($PS, pke, ~f)
, !TPM_AES_Key($PS, aes_key) //our AES key
, TPM_Commit_RCV1( $PS, $AS, pke, cv1val, ~r_cv1)
, Fr(~rnd_n_C)
]
--[
TPM2_Created_Cert_TPM($PS, $AS, kID, pkCCsess_PD)
, Eq(cv1val_in, cv1val) //ensures we have the right ~r_cv1
, TPM_Certify_q($PS, $AS, pke, pkCCsess, ~f)
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
, TPM_Cert_Test2(pke, small_s, ~f)
, CertifyOnlyOnce('TPM2_Load_And_Certify')
]->
[Out_S($PS, $AS, < kID, curlyA, small_s, n_C, 'ret_TPM2_Certify'>)]
// the TPM computes the MAC of ('00' || hash(authorization counter)) using the EMAID secret key
rule TPM2_HMAC:
let
sk_unique=H_SHA256(<obfuscationValue, sk_emaid>)
sk_PD=<'SK_EMAID_public_data', sk_unique>
sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', obfuscationValue, sk_emaid>
sk_SD=senc(sk_SENSITIVE,aes_key)
mac_out=MAC(m, sk_emaid)
in
[
In_S($AS, $PS, < pke, sk_PD, sk_SD, m, 'TPM2_HMAC'>)
, !TPM_AES_Key($PS, aes_key) //our AES key
, !TPM_EMAID_SK($PS, pke, sk_emaid) //
]
--[
TPM_HMAC($PS, $AS, pke, sk_emaid)
, CertifyOnlyOnce(<'TPM2_HMAC', m>)
]->
[Out_S($PS, $AS, < sk_PD, mac_out, 'ret_TPM2_HMAC'>)]
/*
rule TPM2_HMAC_Adv:
[ In(<$PS, $AS, < sk_PD, mac_out, 'ret_TPM2_HMAC'>>) ]
--[
TPM_HMAC_A($PS, $AS, mac_out)
, CertifyOnlyOnce('TPM2_HMAC_A')
]->
[Out_S($PS, $AS, < sk_PD, mac_out, 'ret_TPM2_HMAC'>)]
*/
//Host: receives certified key and mac
rule Host_Receive_Certified_Q_k2:
[
In_S($PS, $AS, < kID, curlyA, small_s, n_C, 'ret_TPM2_Certify'>)
, In_S($PS, $AS, < sk_PD, tM_id, 'ret_TPM2_HMAC'>)
, Host_State_10( $PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, small_c, sid, $CP, i_x )
Host_Receive_Certified_Q_k2($PS, $AS, pkCCsess_PD)
[ Host_State_10a( $PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, small_c, sid, $CP, i_x, curlyA, small_s, n_C, tM_id ) ]
//Host: completes the signature and sends the PaymentDetailsReq message to the CP
rule Host_Receive_Certified_Q_k:
let //existing values
EMSP_Cert=<I,pkX,pkY>
A=multp(r,'P1')
B=multp(y,A)
C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
D=multp(multp(r,y),Q)
/*sk_unique=H_SHA256(<obfuscationValue, sk_emaid>)
sk_PD=<'SK_EMAID_public_data', sk_unique>
bsn=BSN('bottom') //basename='bottom'
E=E_S(r_cv1,S)
R=multp(sl,A)
S=multp(sl,B)
T=multp(sl,C)
W=multp(sl,D)
credData='CredentialData'
kID=DAAKeyID(keyID) //needed to associate the response with the right key
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
pkCCsess_n=QName('SHA256',H_SHA256(pkCCsess_PD))
curlyA=certData('certificationData',pkCCsess_n)
//received value
n_C=Nonce(rnd_n_C)
small_s=plus(r_cv1,multp(h2,f))
small_c=H_k_7(credData,R,S,T,W,E, sid)
//computed values
h1_host=H_k_2(small_c, H_6(curlyA))
h2_host=H_n_2(n_C, h1_host)
sigma_K=<pkCCsess_PD, curlyA, bsn, R, S, T, W, h2_host, small_s, n_C>
in
[
//In_S($PS, $AS, < kID, curlyA, small_s, n_C, 'ret_TPM2_Certify'>)
//, In_S($PS, $AS, < sk_PD, tM_id, 'ret_TPM2_HMAC'>)
//, Host_State_10( $PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, small_c, sid, $CP, i_x )
Host_State_10a( $PS, $AS, pke, bsn, R, S, T, W, E, cv1val, EMSP_Cert, CCdaa_SD, CCdaa_PD, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, small_c, sid, $CP, i_x, curlyA, small_s, n_C, tM_id )
--[ Host_Receive_Certified_Q_K($PS, $AS, pke, kID, pkCCsess_PD)
, Host_Sends_Certified_Q_K($PS, $AS, pke, sigma_K)
, Host_Sends_Certified_Q_K2($PS, $AS, pke, sigma_K, g)
, Host_Sends_Certified_Q_K_cred($PS, $AS, pke, R, S, T, W, sigma_K)
, Honest ($PS)
, Honest ($AS)
, Honest (pke)
, RunningEV_Test(pke, I, <A, B, C, D>)
, RunningEV_Test2(pke, $CP, small_s, f)
, CertifyOnlyOnce('Host_Receive_Certified_Q_K')
]->
[Out(<$CP, sid, EMSP_Cert, h(tM_id), sigma_K, 'PaymentDetailsReq'>)
, Host_State_11( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, i_x )]
// CP verifies the PaymentDetailsReq message, generates a fresh nonce_ix and sends it
// with the usual V2G PnC nonce to the EV in the PayDetailsRes message
rule CP_Check_TPM_Certificate:
let
EMSP_Cert=<I,pkX,pkY>
//ensure the right format
//of the received values
bsn_in=BSN('bottom')
R=multp(sl,A)
S=multp(sl,B)
T=multp(sl,C)
W=multp(sl,D)
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
pkCCsess_n=QName('SHA256',H_SHA256(pkCCsess_PD))
curlyA=certData('certificationData',pkCCsess_n)
small_s=plus(r_cv1, multp(h2,f))
n_C=Nonce(rnd_n_C)
credData='CredentialData'
sigma_K=<pkCCsess_PD, curlyA, bsn_in, R, S, T, W, h2_host, small_s, n_C>
localAuth=<I, CPM_id, nonce_ix, CPM_auth>
//computed values
//E_dash=minus(multp(small_s, S), multp(h2_host, W)) = E
E_dash=calcE_S_cert(small_s, S, h2_host, W)
//generic checks
check1=verifyCre3(R,pkY,S,'P2')
check2=verifyCre4(R,W,pkX,T,'P2')
//certificate check
c_dash=H_k_7(credData, R, S, T, W, E_dash, ~sid)
h1_dash=H_k_2(c_dash, H_6(curlyA))
h2_dash=H_n_2(n_C, h1_dash)
m_out=<$CP, ~sid, ~nonce, nonce_ix, 'PaymentDetailsRes'>
in
[In(<$CP, ~sid, EMSP_Cert, M_id, sigma_K, 'PaymentDetailsReq'>)
, !Pk(I, pkX, pkY) // Authentic from EMSP cert
, CP_State_00($CP, ~sid, localAuth)
, Fr(~nonce)]
--[
Eq(check1,accept) //check that h_hat(R,Y)=h_hat(lA,yP2)=h_hat(lyA,P2)=h_hat(lB,P2)=h_hat(S,P2)
, Eq(check2,accept) //check that h_hat(R+W,X)=h_hat(T,P2)
, Eq(h2_dash, h2_host) //ensure that the recomputed hash matches the one provided
, VerifiedCertificate($CP, sigma_K)
, VerifiedCertificate2($CP, sigma_K, pk(g), f)
, VerifiedCertificateDeAnonymised(bsn_in, sigma_K, f) //allows us to reason about the secret key used in signatures
, CertifyOnlyOnce('CP_Check_TPM_Certificate')
]->
[
Out(m_out)
, CP_State_01($CP, ~sid, I, sigma_K, ~nonce,M_id, localAuth)
]
//host receives PaymentDetailsRes message from CP and asks TPM to compute the mac_out
// of ('01' || hash(authorization counter))
rule Host_Auth:
let
m=<$CP, sid, nonce, nonce_ix, 'PaymentDetailsRes'>
m_buffer=<'01',i_x>
in
[ In(m),
Host_State_11( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, i_x )
]
--[
Host_Auth($PS, $AS, sid)
, CertifyOnlyOnce('Host_Auth')
]->
[
Out_S($AS, $PS, < pke, sk_PD, sk_SD, m_buffer, 'TPM2_HMAC'>),
Host_State_12( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, nonce, nonce_ix) ]
// host receives mac from TPM and asks the TPM to sign the charge authorisation request
// with the session key
rule Host_Auth2:
let
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
tM_auth=h(<M_auth, nonce_ix>)
authH=h(<'AuthorizationReq', $CP, nonce, tM_auth>)
in
[
In_S($PS, $AS, < sk_PD, M_auth, 'ret_TPM2_HMAC'>),
Host_State_12( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, nonce, nonce_ix)
]
--[
Host_Auth2($PS, $AS, sid)
, Host_Auth22($PS, $AS, authH)
, CertifyOnlyOnce('Host_Auth2')
]->
[ Out_S($AS, $PS, < CCsess_SD, pkCCsess_PD, authH, 'TPM2_Sign_S'>),
Host_State_13( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, nonce, nonce_ix, M_auth)
]
// TPM signs the authorization request with the session key and returns signature to host
rule TPM2_Sign_SessionKey:
let
CCsess_SD=senc(~g,aes_key)
pkCCsess=pk(~g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
[ In_S($AS, $PS, < CCsess_SD, pkCCsess_PD, hash_in, 'TPM2_Sign_S'>)
, !TPM_Session_SK($PS, pke, pkCCsess, ~g)
TPM2_Sign_S($PS, $AS, pkCCsess_PD)
, TPM2_Sign_S2($PS, $AS, pkCCsess_PD, hash_in)
, CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)
]->
[Out_S($PS, $AS, < pkCCsess_PD, sign(hash_in,~g), 'ret_TPM2_Sign_S'>)]
// host receives signature for authorization request from TPM and sends the
// signed authorization request to the CP
rule Host_Auth3:
let
EMSP_Cert=<I,pkX,pkY>
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
/*sk_unique=H_SHA256(<obfuscationValue, sk_emaid>)
sk_PD=<'SK_EMAID_public_data', sk_unique>
M_auth=MAC(m, sk_emaid)*/
tM_auth=h(<M_auth, nonce_ix>)
authH=h(<'AuthorizationReq', $CP, nonce, tM_auth>)
[ In_S($PS,$AS, < pkCCsess_PD, sig_over_auth, 'ret_TPM2_Sign_S'>),
Host_State_13( $PS, $AS, pke, EMSP_Cert, sk_PD, sk_SD, kID, CCsess_SD,pkCCsess_PD, sid, $CP, nonce, nonce_ix, M_auth)
Eq(verify(sig_over_auth,authH,pkCCsess), true) //TPM response is for prev call
, Host_Auth3($PS, $AS, sid)
//, CounterH(i_x_t)
, RunningEV_Sign( pke , $CP, authH )
, RunningEV_Sign2( $PS, $AS, $CP, authH )
, RunningEV_Sign3( $PS, $AS, $CP, authH, pkCCsess, sig_over_auth )
, RunningEV_Auth2( $PS, $AS, pke, I, M_auth, pkCCsess_PD )
[ Out(<sid, authH, sig_over_auth, tM_auth, 'AuthorizationReq'>)
, !Host_State_14( $PS, $AS, pke, EMSP_Cert, kID, CCsess_SD,pkCCsess_PD, sid, $CP, M_auth)
]
//=============================================================
// Charge Authorisation Part 2
//=============================================================
// the CP verifies the authorization request,
// rquesting the user's authorization data from the backend
rule CP_Verify:
let
bsn_in=BSN('bottom')
R=multp(sl,A)
S=multp(sl,B)
T=multp(sl,C)
W=multp(sl,D)
pkCCsess=pk(g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
pkCCsess_n=QName('SHA256',H_SHA256(pkCCsess_PD))
curlyA=certData('certificationData',pkCCsess_n)
sigma_K=<pkCCsess_PD, curlyA, bsn_in, R, S, T, W, h2_host, small_s, n_C>
localAuth=<I, CPM_id, nonce_ix, CPM_auth>
m_in=<~sid, authH_in, sig_over_auth, tM_auth, 'AuthorizationReq'>
CPM_auth_in=h(tM_auth)
authH=h(<'AuthorizationReq', $CP, ~nonce, tM_auth>)
m_out=<M_id, nonce_ix, tM_auth, pkCCsess>
, CP_State_01($CP, ~sid, I, sigma_K, ~nonce, M_id, localAuth)
, Eq(verify(sig_over_auth,authH,pkCCsess), true)
, Eq(CPM_auth_in, CPM_auth)
, CommitCP($CP, pkCCsess, authH)
, CommitCP2($CP, pkCCsess, authH, sig_over_auth)
, CommitCP3($CP, I, tM_auth, pkCCsess)
, Honest(I)
, Honest($CP)
, CertifyOnlyOnce('CP_Verify')
]->
[ Out(<I, <m_out, 'EMSP_Auth'>>)
, !CP_State_02($CP, ~sid, I, pkCCsess, tM_auth) ]
// the eMSP verifies the authorization request
rule EMSP_Auth:
let
i_x=h(i_x_t)
m=<M_id_in, nonce_ix, tM_auth_in, pkCCsess>
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
tM_id=MAC(<'00', i_x>, ~sk_emaid)
M_id=h(tM_id)
in
[ In(<I, <m, 'EMSP_Auth'>>)
, !OutIX(i_x_t)
, !Issuer_EMAID_SK(I, pke, ~sk_emaid)
]
--[ Eq(M_id, M_id_in)
, Eq(tM_auth, tM_auth_in)
, CommitEMSP2(I, pke, M_auth, pkCCsess_PD)
, CommitEMSP_sk(I, pke, ~sk_emaid)
, CommitEMSP_sk2(I, pke, M_auth, ~sk_emaid)
, Honest(I)
, Honest(pke)
, OnlyOnce_i_x(I, ~sk_emaid, i_x)
, CertifyOnlyOnce('EMSP_Auth')
]->
[
!Issuer_State_Charge(I, pke, ~sk_emaid, i_x, M_auth, pkCCsess)
]
// the CP sends the charge data to the vehicle for attestation
rule CP_DataSend:
let
data=<$CP, ~sid, 'charge_data',~dataID>
in
[ Fr(~dataID)
, !CP_State_02($CP, ~sid, I, pkCCsess, tM_auth)
]
--[
CP_DataSend($CP, ~sid, ~dataID),
CertifyOnlyOnce('CP_DataSend')
]->
[ Out(data)
, CP_State_03($CP, ~sid, I, pkCCsess, tM_auth, ~dataID) ]
// the EV (using its TPM) signs the charge data together with ev_h, a hash over the authorisation
// value used during charge authorisation and its public session key to bind them
// charge data to the corresponding charge authorisation.
rule EV_DataSign:
let
EMSP_Cert=<I,pkX,pkY>
pkCCsess=pk(~g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
dataTBS=h(<'charge_data',dataID, ev_h>)
in
[ In(data)
, !Host_State_14( $PS, $AS, pke, EMSP_Cert, kID, CCsess_SD,pkCCsess_PD, sid, $CP, M_auth)
--[ EV_DataSign($PS, $AS, kID, pkCCsess_PD, sid, dataID)
[ Out_S($AS, $PS, < CCsess_SD, pkCCsess_PD, dataTBS, 'TPM2_Sign_S'>)
, Host_State_15( $PS, $AS, pke, EMSP_Cert, kID, CCsess_SD,pkCCsess_PD, sid, $CP, M_auth, data, dataTBS)
]
// the EV receives the signed charge data from the TPM, sends the signature
// to the CP
rule EV_DataSign_Send:
let
EMSP_Cert=<I,pkX,pkY>
pkCCsess=pk(~g)
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
dataTBS=h(<'charge_data',dataID, ev_h>)
m_out=<ev_h, dataTBS, dataSig>
m_o2=<'charge_data',dataID, dataSig, ev_h>
in
[ In_S($PS, $AS, < pkCCsess_PD, dataSig, 'ret_TPM2_Sign_S'>)
, Host_State_15( $PS, $AS, pke, EMSP_Cert, kID, CCsess_SD,pkCCsess_PD, sid, $CP, M_auth, data, dataTBS)
Eq(verify(dataSig,dataTBS,pkCCsess), true), //TPM response is for prev call
EV_DataSign_Send($PS, $AS, kID, pkCCsess_PD, sid, dataID),
EV_DataSign_Send2($PS, $AS, pkCCsess),
RunningEV_Data($PS, $AS, pke, I, <M_auth, 'charge_data', dataID>),
RunningEV_Data2(pke, I, <M_auth, 'charge_data', dataID>),
RunningEV_Data3($PS, $AS, $CP, dataTBS),
CertifyOnlyOnce('EV_DataSign_Send')
]->
[ Out(m_out), Out(m_o2) ]
// The CP receives the signed charge data from the EV, verifies the signatures
// and forwards the data and signature to the eMSP
rule CP_DataRec:
let
data=<$CP, ~sid, 'charge_data',~dataID>
m_in=<ev_h, dataTBS_in, dataSig>
dataTBS=h(<'charge_data',~dataID, ev_h>)
M_auth=MAC(<'01',i_x>, sk_emaid)
m_out=<'charge_data',~dataID, dataSig, ev_h>
in
[ In(m_in)
, CP_State_03($CP, ~sid, I, pkCCsess, tM_auth, ~dataID)
, Eq(verify(dataSig,dataTBS,pkCCsess), true)
, CP_DataRec2($CP, pkCCsess, sk_emaid)
, CP_DataRec3($CP, pkCCsess, dataTBS)
, Honest(I)
, CertifyOnlyOnce('CP_DataRec')
]->
[ Out(<I, <m_out, 'EMSP_Data'>>) ]
// The eMSP verifies the signed charge data and its link to a previous charge
// authorisation
rule EMSP_Data:
let
M_auth=MAC(<'01',i_x>, ~sk_emaid)
m=<'charge_data',dataID, dataSig, ev_h_in>
pkCCsess_PD=<'SessionKey_public_data', pkCCsess>
ev_h=h(<'EV_h',M_auth,pkCCsess>)
dataTBS=h(<'charge_data', dataID, ev_h>)
in
[ In(<I, <m, 'EMSP_Data'>>)
, !Issuer_State_Charge(I, pke, ~sk_emaid, i_x, M_auth, pkCCsess)
, Eq(verify(dataSig,dataTBS,pkCCsess), true)
, Honest(I)
, Honest(pke)
, CommitEMSP_Data(I, pke, <M_auth, 'charge_data', dataID>)
, CommitEMSP_Data2(I, pke, <M_auth, 'charge_data', dataID>, pkCCsess_PD)
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
, OnlyOnce_i_x(I, M_auth, dataID)
, CertifyOnlyOnce('EMSP_Data')
]->
[
]
//======================================================================================
// This concludes the description of the scheme using Tamarin rules
// The next section contains the lemmas encapsulating the various properties that we
// want the scheme to have.
//======================================================================================
//======================================================================================
// We start off with some general checks that verify some of the restriction/assumptions
// which we have imposed on our scheme.
//======================================================================================
// Helper lemma for proof generation
lemma source_of_key_reveal_sk [sources]:
// Each EMAID secret key compromised by the adversary has been previously generated by an issuer
"
All sk_emaid #i .
(
KeyRevealSK(sk_emaid) @ i
==>
(
(Ex Iss pke #j . Secret_EMAID(Iss, pke, sk_emaid) @ j & j<i)
)
)
"
// When a TPM and Host are bound together, they have to be different entities
lemma restriction_bind:
"
All Ent1 Ent2 #i .
(Bind(Ent1, Ent2) @ i)
==>
(not(Ent1=Ent2))
"
//a TPM is associated with one and only one host:
lemma restriction_one_host_per_tpm:
"
All TPM Host1 Host2 #i #j.
(Bind(Host1,TPM)@i & Bind(Host2,TPM)@j)
==>
((#i=#j))
"
//a host has only one TPM:
lemma restriction_one_tpm_per_host:
"
All TPM1 TPM2 Host #i #j.
((Bind(Host,TPM1)@i & Bind(Host,TPM2)@j)
==>
(#i=#j))
"
// any endorsement key that is presented to the issuer must have been generated
// by a TPM. This restrictions represents the fact that the issuer will check
// each endorsement key and only allow ones that were created by a TPM
lemma restriction_pke_comes_from_tpm:
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
"All pke #i .
Check_Ek(pke) @ i
==>
(
(Ex TPM Host #j .
(
TPM2_EK_Created(TPM, Host, pke) @ j
&
(#j<#i)
)
)
)
"
//======================================================================================
// Correctness properties
//======================================================================================
// the issuer should be able to check at least 2 pkes
lemma correctness_verify_multiple_pkes: exists-trace
"Ex Issuer TPM1 TPM2 Host1 Host2 pke1 qpd1 pcpd1 pcpd2 pke2 qpd2 #t1 #t2 #t3 #t4 .
PlatformSendKeys(TPM1, Host1, pke1, qpd1, pcpd1) @ t1
& PlatformSendKeys(TPM2, Host2, pke2, qpd2, pcpd2) @ t2
& IssuerReceivedKeys(Issuer, pke1, pcpd1, qpd1) @ t3
& IssuerReceivedKeys(Issuer, pke2, pcpd2, qpd2) @ t4
& not(pke1=pke2)
& not(qpd1=qpd2)
& not(pcpd1=pcpd2)
& not(Host1=Host2)
& not(TPM1=TPM2)
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
"
// the issuer should be able to check at least 2 pkes from different Issuers
lemma correctness_verify_multiple_pkes_diff_I: exists-trace
"Ex Issuer1 Issuer2 TPM Host pke1 qpd1 pcpd1 pcpd2 pke2 qpd2 #t1 #t2 #t3 #t4 .
PlatformSendKeys(TPM, Host, pke1, qpd1, pcpd1) @ t1
& PlatformSendKeys(TPM, Host, pke2, qpd2, pcpd2) @ t2
& IssuerReceivedKeys(Issuer1, pke1, pcpd1, qpd1) @ t3
& IssuerReceivedKeys(Issuer2, pke2, pcpd2, qpd2) @ t4
& (pke1=pke2)
& not(Issuer1=Issuer2)
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
"
// we should be able to get two sets of certs using the same
// randomised credentials
lemma correctness_two_certs_same_credentials: exists-trace
"Ex TPM Host pke R S T W sigma1 sigma2 #t01 #t02 .
Host_Sends_Certified_Q_K_cred(TPM, Host, pke, R, S, T, W, sigma1) @ t01
& Host_Sends_Certified_Q_K_cred(TPM, Host, pke, R, S, T, W, sigma2) @ t02
& #t01<#t02
& not(sigma1=sigma2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only join once
(All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
"
// we should be able to get two sets of certs using different
// randomised credentials
lemma correctness_two_certs_different_credentials: exists-trace
"Ex TPM Host pke
R1 S1 T1 W1 sigma1
R2 S2 T2 W2 sigma2
#t01 #t02 .
Host_Sends_Certified_Q_K_cred(TPM, Host, pke, R1, S1, T1, W1, sigma1) @ t01
& Host_Sends_Certified_Q_K_cred(TPM, Host, pke, R2, S2, T2, W2, sigma2) @ t02
& not(#t01=#t02)
& //credentials are different
not(R1=R2) & not(S1=S2) & not(T1=T2) & not(W1=W2)
& not(sigma1=sigma2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only join once
(All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
"
// it should be possible for an vehicle to have two different charge processes
// authorized by the same eMSP
lemma correctness_two_auths_same_ev_same_key: exists-trace
"Ex Iss Iss2 pke
M_auth1 M_auth2
sk_emaid1 sk_emaid2
#t01 #t02 .
CommitEMSP_sk2(Iss, pke, M_auth1, sk_emaid1) @ t01
& CommitEMSP_sk2(Iss2, pke, M_auth2, sk_emaid2) @ t02
& (Iss=Iss2)
& not(#t01=#t02)
& //credentials are different
not(M_auth1=M_auth2)
& (sk_emaid1=sk_emaid2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only join same ev once
(All TPM Host pke sk_emaid #i .
TPM_HMAC(TPM, Host, pke, sk_emaid)@i
==> (sk_emaid=sk_emaid1) | (sk_emaid=sk_emaid2))
& //we only join once
(All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& //we only sign same value once
(All hash_in #i #j .
CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@i & CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@j
==> (#i=#j))
& //we only mac same value once
(All m #i #j .
CertifyOnlyOnce(<'TPM2_HMAC', m>)@i & CertifyOnlyOnce(<'TPM2_HMAC', m>)@j
==> (#i=#j))
"
// it should be possible for the eMSP to authorise two charge processes by
// different EVs
lemma correctness_two_auths_diff_ev_diff_key: exists-trace
"Ex Iss pke1 pke2
M_auth1 M_auth2
sk_emaid1 sk_emaid2
#t01 #t02 .
CommitEMSP_sk2(Iss, pke1, M_auth1, sk_emaid1) @ t01
& CommitEMSP_sk2(Iss, pke2, M_auth2, sk_emaid2) @ t02
& not(#t01=#t02)
& //credentials are different
not(M_auth1=M_auth2)
& not(sk_emaid1=sk_emaid2)
& not(pke1=pke2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only join same ev once
(All TPM Host pke #i #j .
JoinCompleted(TPM, Host, pke)@i & JoinCompleted(TPM, Host, pke)@j
==> (#i=#j))
& //we only alive same ev once
(All TPM Host pke #i #j .
AliveEV(TPM, Host, pke)@i & AliveEV(TPM, Host, pke)@j
==> (#i=#j))
& //we only sign same value once
(All hash_in #i #j .
CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@i & CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@j
==> (#i=#j))
& //we only mac same value once
(All m #i #j .
CertifyOnlyOnce(<'TPM2_HMAC', m>)@i & CertifyOnlyOnce(<'TPM2_HMAC', m>)@j
==> (#i=#j))
"
// it should be possible for an vehicle to have two different charge processes
// using different EMAID keys authorized by the same eMSP
lemma correctness_two_auths_same_ev_diff_key: exists-trace
"Ex Iss pke
M_auth1 M_auth2
sk_emaid1 sk_emaid2
#i01 #i02
#t01 #t02 .
Secret_Imported(pke, sk_emaid1) @ i01
& Secret_Imported(pke, sk_emaid2) @ i02
& CommitEMSP_sk2(Iss, pke, M_auth1, sk_emaid1) @ t01
& CommitEMSP_sk2(Iss, pke, M_auth2, sk_emaid2) @ t02
& not(#i01=#i02) & not(#t01=#t02)
& //credentials are different
not(M_auth1=M_auth2)
& not(sk_emaid1=sk_emaid2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only run ev once w/ same cred
(All pke1 I1 pke2 I2 cred1 #i #j .
RunningEV_Test(pke1, I1, cred1)@i & RunningEV_Test(pke2, I2, cred1)@j
==> (#i=#j) )
& //we only TPM once
(All PS PS2 #i #j .
TPM_Init(PS)@i & TPM_Init(PS2)@j
==> (#i=#j) )
& //we only import same once
(All pke1 pke2 sk_emaid #i #j .
Secret_Imported(pke1, sk_emaid)@i & Secret_Imported(pke2, sk_emaid)@j
==> (#i=#j) )
& //we only join same ev
(All TPM1 Host1 pke1 #i .
JoinCompleted(TPM1, Host1, pke1)@i
==> (pke1 = pke))
& //we only sign same value once
(All hash_in #i #j .
CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@i & CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@j
==> (#i=#j))
& //we only mac same value once
(All m #i #j .
CertifyOnlyOnce(<'TPM2_HMAC', m>)@i & CertifyOnlyOnce(<'TPM2_HMAC', m>)@j
==> (#i=#j))
"
// it should be possible for the eMSP to obtain two charge data messages
// signed by the same vehicle
lemma correctness_two_data: exists-trace
"Ex Iss pke
data1 data2
#i01 #i02
#t01 #t02 .
RunningEV_Data2(pke, Iss, data1) @ i01
& RunningEV_Data2(pke, Iss, data2) @ i02
& CommitEMSP_Data(Iss, pke, data1) @ t01
& CommitEMSP_Data(Iss, pke, data2) @ t02
& not(#i01=#i02) & not(#t01=#t02)
& //credentials are different
not(data1=data2)
& //we had no key reveal
not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
& //we only run ev once
(All pke1 I1 pke2 I2 cred1 cred2 #i #j .
RunningEV_Test(pke1, I1, cred1)@i & RunningEV_Test(pke2, I2, cred2)@j
==> (#i=#j) )
& //we only auth once
(All TPM1 Host1 sid1 TPM2 Host2 sid2 #i #j .
Host_Auth3(TPM1, Host1, sid1)@i & Host_Auth3(TPM2, Host2, sid2)@j
==> (#i=#j))
& //we only join once
(All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& //we only sign same value once
(All hash_in #i #j .
CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@i & CertifyOnlyOnce(<'TPM2_Sign_SessionKey', hash_in>)@j
==> (#i=#j))
& //we only mac same value once
(All m #i #j .
CertifyOnlyOnce(<'TPM2_HMAC', m>)@i & CertifyOnlyOnce(<'TPM2_HMAC', m>)@j
==> (#i=#j))
"
// Correctness of the complete credential installation process
lemma correctness_credential_req: exists-trace
" Ex TPM Host I pke pcpd qpd sk_emaid //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08 #t09
#t10 #t14 //#t16 #t17 #t18 #t19
#t20 #t21 #t22 #t23
.
//we initiated at one issuer, host/EV, and TPM
Issuer_Init(I) @ t01
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
//created an provisioning key PC
& TPM2_PC_Created(TPM, Host) @ t07
// stored the provisioning key with the host
& Store_PC(TPM, Host) @ t08
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t09
//stored the DAA key with the host
& Store_DAA(TPM, Host) @ t10
//recieved and answered the credential request as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t14
& Secret_EMAID(I, pke, sk_emaid) @ t14
// received the response by the host
& Passthrough_ActivateCred2(TPM, Host) @ t20
// imported the EMAID key into the TPM and returned it to the host
& Secret_Imported(pke, sk_emaid) @ t21
//decrypted the DAA credentials in the TPM and returned them to the host
& CurlyK2_recomputed(TPM, Host) @ t22
//received the DAA and EMAID key as the host and completed the credential installation
& JoinCompleted(TPM, Host, pke) @ t23
// With the correct temporal ordering
& t01<t02 //Issuer gets created before Host
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t09
& t09<t10
& t10<t14
& t14<t20
& t20<t21
& t21<t22
& t22<t23
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
"
// Correctness of the charge autorisation process until the EV sent the authorisation values
lemma correctness_charge_authorisation_req_1: exists-trace
" Ex TPM Host I pke pcpd qpd //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08
#t12
//#t12 #t13 #t14 #t15 #t16 #t17 #t18 #t19
#t20
#t21 #t22
//certify steps
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
#t23 #t24 #t25 #t26 #t27 #t28
.
//we initiated at least 3 entities
Issuer_Init(I) @ t01
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
& TPM2_PC_Created(TPM, Host) @ t07
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t08
//stored the DAA key with the host
//& Store_Keys(TPM, Host) @ t10
//check the EK and CCdaa_PD as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t12
& Passthrough_ActivateCred2(TPM, Host) @ t20
& CurlyK2_recomputed(TPM, Host) @ t21
& JoinCompleted(TPM, Host, pke) @ t22
//Certify Key
& RandomisedCredentials(TPM, Host, pke) @ t23
& TPMCommitRandomised(TPM, Host, pke) @ t24
& TPM2_SessionKey_Created(TPM, Host, kID, pkCCsess_PD) @ t25
& LoadKeyForCertification(TPM, Host, kID, pkCCsess_PD) @ t26
& TPM2_Created_Cert_TPM(TPM, Host, kID, pkCCsess_PD) @ t27
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
& Host_Sends_Certified_Q_K(TPM, Host, pke, sigma) @ t28
& t01<t02 //Issuer gets created before Host
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t12
& t12<t20
& t20<t21
& t21<t22
//certify steps
& t22<t23
& t23<t24
& t24<t25
& t25<t26
& t26<t27
& t27<t28
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& (All event #i #j . CertifyOnlyOnce(event)@i & CertifyOnlyOnce(event)@j ==> #i=#j)
"
// Correctness of charge authorisation request until the request is received by the CP
lemma correctness_charge_authorisation_req_2: exists-trace
" Ex TPM Host I pke pcpd qpd //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08
#t12 // #t14 #t15 #t16 #t17 #t18 #t19
#t20 #t21 #t22
//certify and verify steps
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
#t23 #t24 #t25 #t26 #t27 #t28 #t29
.
//we initiated at least 3 entities
Issuer_Init(I) @ t01
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
& TPM2_PC_Created(TPM, Host) @ t07
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t08
//stored the DAA key with the host
//& Store_Keys(TPM, Host) @ t10
//check the EK and CCdaa_PD as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t12
& Passthrough_ActivateCred2(TPM, Host) @ t20
& CurlyK2_recomputed(TPM, Host) @ t21
& JoinCompleted(TPM, Host, pke) @ t22
//Certify and verify starts here
& RandomisedCredentials(TPM, Host, pke) @ t23
& TPMCommitRandomised(TPM, Host, pke) @ t24
& TPM2_SessionKey_Created(TPM, Host, kID, pkCCsess_PD) @ t25
& LoadKeyForCertification(TPM, Host, kID, pkCCsess_PD) @ t26
& TPM2_Created_Cert_TPM(TPM, Host, kID, pkCCsess_PD) @ t27
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
& Host_Sends_Certified_Q_K(TPM, Host, pke, sigma) @ t28
& VerifiedCertificate(CP, sigma) @ t29
& t01<t02 //Issuer gets created before CPS
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t12
& t12<t20
& t20<t21
& t21<t22
//quote and verify
& t22<t23
& t23<t24
& t24<t25
& t25<t26
& t26<t27
& t27<t28
& t28<t29
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& (All event #i #j . CertifyOnlyOnce(event)@i & CertifyOnlyOnce(event)@j ==> #i=#j)
"
// Correctness of the complete charge authorisation process
lemma correctness_charge_authorisation: exists-trace
" Ex TPM Host I pke pcpd qpd //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08
#t12 // #t14 #t15 #t16 #t17 #t18 #t19
#t20 #t21 #t22
//certify and verify steps
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
#t23 #t24 #t25 #t26 #t27 #t28 #t29
CP sid #t01_2
sk_emaid
#t30 #t31 #t32 #t33 #t34 #t35 #t36
M_auth
.
//we initiated at least 3 entities
Issuer_Init(I) @ t01
& CP_Init(CP) @ t01_2
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
& TPM2_PC_Created(TPM, Host) @ t07
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t08
//stored the DAA key with the host
//& Store_Keys(TPM, Host) @ t10
//check the EK and CCdaa_PD as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t12
& Passthrough_ActivateCred2(TPM, Host) @ t20
& CurlyK2_recomputed(TPM, Host) @ t21
& JoinCompleted(TPM, Host, pke) @ t22
//Certify and verify starts here
& RandomisedCredentials(TPM, Host, pke) @ t23
& TPMCommitRandomised(TPM, Host, pke) @ t24
& TPM2_SessionKey_Created(TPM, Host, kID, pkCCsess_PD) @ t25
& LoadKeyForCertification(TPM, Host, kID, pkCCsess_PD) @ t26
& TPM2_Created_Cert_TPM(TPM, Host, kID, pkCCsess_PD) @ t27
& Host_Sends_Certified_Q_K(TPM, Host, pke, sigma) @ t28
& VerifiedCertificate(CP, sigma) @ t29
& Host_Auth(TPM, Host, sid) @ t30
& TPM_HMAC(TPM, Host, pke, sk_emaid) @ t31
& Host_Auth2(TPM, Host, sid) @ t32
& TPM2_Sign_S(TPM, Host, pkCCsess_PD) @ t33
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
& RunningEV_Auth(TPM, Host, pke, I, M_auth ) @ t34
& CP_Verify(CP, sid) @t35
& CommitEMSP(I, pke, M_auth) @t36
& t01<t02 //Issuer gets created before CPS
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t12
& t12<t20
& t20<t21
& t21<t22
//quote and verify
& t22<t23
& t23<t24
& t24<t25
& t25<t26
& t26<t27
& t27<t28
& t28<t29
& t29<t30
& t30<t31
& t31<t32
& t32<t33
& t33<t34
& t34<t35
& t35<t36
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& (All event #i #j . CertifyOnlyOnce(event)@i & CertifyOnlyOnce(event)@j ==> #i=#j)
"
// Correctness of the charge data authentication process
lemma correctness_charge_data_authentication: exists-trace
" Ex TPM Host I pke pcpd qpd //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08
#t12 // #t14 #t15 #t16 #t17 #t18 #t19
#t20 #t21 #t22
//certify and verify steps
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
#t23 #t24 #t25 #t26 #t27 #t28 #t29
CP sid #t01_2
sk_emaid
#t30 #t31 #t32 #t33 #t34 #t35 #t36
M_auth
dataID
#t37 #t38 #t39 #t40 #t41 #t42
.
//we initiated at least 3 entities
Issuer_Init(I) @ t01
& CP_Init(CP) @ t01_2
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
& TPM2_PC_Created(TPM, Host) @ t07
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t08
//stored the DAA key with the host
//& Store_Keys(TPM, Host) @ t10
//check the EK and CCdaa_PD as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t12
& Passthrough_ActivateCred2(TPM, Host) @ t20
& CurlyK2_recomputed(TPM, Host) @ t21
& JoinCompleted(TPM, Host, pke) @ t22
//Certify and verify starts here
& RandomisedCredentials(TPM, Host, pke) @ t23
& TPMCommitRandomised(TPM, Host, pke) @ t24
& TPM2_SessionKey_Created(TPM, Host, kID, pkCCsess_PD) @ t25
& LoadKeyForCertification(TPM, Host, kID, pkCCsess_PD) @ t26
& TPM2_Created_Cert_TPM(TPM, Host, kID, pkCCsess_PD) @ t27
& Host_Sends_Certified_Q_K(TPM, Host, pke, sigma) @ t28
& VerifiedCertificate(CP, sigma) @ t29
& Host_Auth(TPM, Host, sid) @ t30
& TPM_HMAC(TPM, Host, pke, sk_emaid) @ t31
& Host_Auth2(TPM, Host, sid) @ t32
& TPM2_Sign_S(TPM, Host, pkCCsess_PD) @ t33
& RunningEV_Auth(TPM, Host, pke, I, M_auth ) @ t34
& CP_Verify(CP, sid) @t35
& CommitEMSP(I, pke, M_auth) @t36
& CP_DataSend(CP, sid, dataID) @t37
& EV_DataSign(TPM, Host, kID, pkCCsess_PD, sid, dataID) @t38
& TPM2_Sign_S(TPM, Host, pkCCsess_PD) @t39
& EV_DataSign_Send(TPM, Host, kID, pkCCsess_PD, sid, dataID) @t40
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
& CP_DataRec(CP, sid, dataID) @t41
& CommitEMSP_Data(I, pke, <M_auth, 'charge_data', dataID>) @t42
& t01<t02 //Issuer gets created before CPS
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t12
& t12<t20
& t20<t21
& t21<t22
//quote and verify
& t22<t23
& t23<t24
& t24<t25
& t25<t26
& t26<t27
& t27<t28
& t28<t29
& t29<t30
& t30<t31
& t31<t32
& t32<t33
& t33<t34
& t34<t35
& t35<t36
& t36<t37
& t37<t38
& t38<t39
& t39<t40
& t40<t41
& t41<t42
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& (All event #i #j . CertifyOnlyOnce(event)@i & CertifyOnlyOnce(event)@j ==> #i=#j)
"
lemma correctness_with_adv: exists-trace
" Ex TPM Host I pke pcpd qpd //n
#t01 #t02 #t03 #t04 #t05 #t06 #t07 #t08
#t12 // #t14 #t15 #t16 #t17 #t18 #t19
#t20 #t21 #t22
//certify and verify steps
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
#t23 #t24 #t25 #t26 #t27 #t28
sid sk_emaid
#t30 #t31 #t32 #t33 #t34 #t36
M_auth dataID
#t38 #t39 #t40 #t42
.
//we initiated at least 3 entities
Issuer_Init(I) @ t01
& Host_Init(Host) @ t02
& TPM_Init(TPM) @ t03
//we had no key reveal
& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1)
//we had a successful Platform set-up
& Bind(TPM, Host) @ t04
//created an endorsement key EK
& TPM2_EK_Created(TPM, Host, pke) @ t05
//stored the EK with the host
& Store_EK(TPM, Host) @ t06
& TPM2_PC_Created(TPM, Host) @ t07
//created a DAA key
& TPM2_DAA_Created(TPM, Host) @ t08
//stored the DAA key with the host
//& Store_Keys(TPM, Host) @ t10
//check the EK and CCdaa_PD as the issuer
& IssuerReceivedKeys(I, pke, pcpd, qpd) @ t12
& Passthrough_ActivateCred2(TPM, Host) @ t20
& CurlyK2_recomputed(TPM, Host) @ t21
& JoinCompleted(TPM, Host, pke) @ t22
//Certify and verify starts here
& RandomisedCredentials(TPM, Host, pke) @ t23
& TPMCommitRandomised(TPM, Host, pke) @ t24
& TPM2_SessionKey_Created(TPM, Host, kID, pkCCsess_PD) @ t25
& LoadKeyForCertification(TPM, Host, kID, pkCCsess_PD) @ t26
& TPM2_Created_Cert_TPM(TPM, Host, kID, pkCCsess_PD) @ t27
& Host_Receive_Certified_Q_K(TPM, Host, pke, kID, pkCCsess_PD) @ t28
& Host_Auth(TPM, Host, sid) @ t30
& TPM_HMAC(TPM, Host, pke, sk_emaid) @ t31
& Host_Auth2(TPM, Host, sid) @ t32
& TPM2_Sign_S(TPM, Host, pkCCsess_PD) @ t33
& RunningEV_Auth2(TPM, Host, pke, I, M_auth, pkCCsess_PD ) @ t34
& CommitEMSP2(I, pke, M_auth, pkCCsess_PD) @t36
& EV_DataSign(TPM, Host, kID, pkCCsess_PD, sid, dataID) @t38
& TPM2_Sign_S(TPM, Host, pkCCsess_PD) @t39
& EV_DataSign_Send(TPM, Host, kID, pkCCsess_PD, sid, dataID) @t40
& CommitEMSP_Data2(I, pke, <M_auth, 'charge_data', dataID>, pkCCsess_PD) @t42
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
& t01<t02 //Issuer gets created before CPS
& t02<t04 //Host gets created before Bind
& t03<t04 //TPM get created before Bind
& t04<t05
& t05<t06
& t06<t07
& t07<t08
& t08<t12
& t12<t20
& t20<t21
& t21<t22
//quote and verify
& t22<t23
& t23<t24
& t24<t25
& t25<t26
& t26<t27
& t27<t28
& t28<t30
& t30<t31
& t31<t32
& t32<t33
& t33<t34
& t34<t36
& t36<t38
& t38<t39
& t39<t40
& t40<t42
& not(Ex CP_x #a1 . CP_Init(CP_x) @ #a1 )
//restrict the trace further by preventing each rule from firing more than once
& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
& (All event #i #j . CertifyOnlyOnce(event)@i & CertifyOnlyOnce(event)@j ==> #i=#j)
"
//======================================================================================
// In the following section we look at the security properties for
// the charge authorization and charge data authorization in our model
//======================================================================================
// *********** SR2 Secure Credential Installation - Authentication *********************
// The following lemmas go through aspects of Lowe's Authentication hierarchy.
// Aliveness of Host
// This lemma simply shows that at the end of a run of the protocol, an issuer must have been created previously.
// But it does not require the issuer to have been involved in the running of the protocol at all.
// This is a very weak requirement.
lemma auth_aliveness_issuer_very_weak:
"
All Iss pke n #i .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
Commit( pke, Iss, n ) @ i
==>
(
// Implies that there is an active issuer
(Ex #j . Issuer_Init (Iss) @ j)
|
// or there has been a key reveal
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
//this lemma shows that the issuer was involved in a run of the protocol (at least one of its rules fired)
//or that some of the keys of the entities involved were revealed
lemma auth_aliveness_issuer:
"
All Iss pke n1 #i .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
Commit( pke, Iss, n1 ) @ i
==> // Implies that an issuer has previously been involved in a protocol run
( (Ex #k . Alive (Iss) @ k)
|
// or there has been a key reveal of one of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// This lemma simply shows that at the end of a run of the protocol for the issuer with a host,
// the host must have been involved in a run of a protocol that lead up to the final Issuer rule firing
lemma auth_aliveness_host:
"
All Iss pke n #i .
// For all JOIN sessions running between an issuer and a host, Host, on the term(s) n
(
( Running(Iss, pke, n) @ i )
==>
( //the host was involved in a run of the protocol that
//resulted in a message exchange between the host and the issuer
(Ex Host2 #k . Alive(Host2) @ k & Role('Platform') @ k)
|
// or there has been a key reveal of one of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// Agreement checks
// This lemma guarantees that whenever the host completes a run of the protocol, apparently with the issuer,
// then the issuer has previously been running the protocol, apparently with the host.
// This lemma (and also the subsequent agreement lemmas) fails if the endorsement key is not included in
// the str constructed in the Host_ReceiveCurlyK rule which then forms part of the hash p computed in
// Host_ReceiveEAndCV.
lemma auth_weak_agreement_host:
"
All Iss TPM Host pke n1 #i .
(
(
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
Commit( pke, Iss, n1 ) @ i & JoinCompleted(TPM, Host, pke) @ i
)
==>
(
// Implies there exists a running issuer on some term(s) n2
(Ex n2 #j . Running( Iss, pke, n2 ) @ j)
|
// or there has been a key reveal of one of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// This lemma shows that the Host is in a non-injective agreement with the issuer on
// the credentials if, whenever the Host completes a run of the protocol, apparently with the Issuer,
// then the Issuer has previously been running the protocol, apparently with the Host, and
//the two principals agreed on the terms n
lemma auth_non_injective_agreement_host_issuer:
"
All Iss pke n #i .
(
(
// For all commited JOIN sessions running between a platform (identified by is endorsement public key pke) and issuer on the term(s) n
Commit( pke, Iss, n ) @ i
)
==>
(
// Implies there exists a running issuer on the same term
(Ex #j . Running( Iss, pke, n ) @ j)
|
// or there has been a key reveal of one of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// This lemma shows that the Host is in an injective agreement with the issuer on
// the credentials if, whenever the Host completes a run of the protocol, apparently with the Issuer,
// then the Issuer has previously been running the protocol, apparently with the Host, and
//the two principals agreed on the terms n
// Additionally, there is a unique matichng partner instance for each completed run of an agent.
lemma auth_injective_agreement_host_issuer:
"
All Iss pke n #i .
(
(
// For all commited JOIN sessions running between a platform (identified by is endorsement public key pke) and issuer on the term(s) n
Commit( pke, Iss, n ) @ i
)
==>
(
(
// Implies there exists a running issuer on the same term
(Ex #j .
(
Running( Iss, pke, n ) @ j
&
(#j<#i)
&
// And each commited JOIN session corresponds to a unique issuer run
( not(
Ex Iss2 pke2 #i2 . ( Commit( pke2, Iss2, n) @ i2 & not(#i2=#i) )
)
)
)
)
)
|
// or there has been a key reveal of one of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// ************* SR2 Secure Credential Installation - Secrecy ************************
// CRE secrecy from the perspective of both the Issuer and the TPM/Host.
lemma auth_secrecy_cre:
"
All Iss pke cred #i.
// somebody claims to have setup a shared secret,
Secret( pke, Iss, cred ) @ i
==>
// implies the adversary does not know it
not( Ex #k. K( cred ) @ k )
|
// or it is the case that a key has been revealed
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
"
// CRE secrecy from the perspective of both the Issuer and the TPM/Host.
lemma auth_secrecy_emaid:
"
All Iss pke sk_emaid #i.
// somebody claims to have setup a shared secret,
Secret_EMAID( Iss, pke, sk_emaid ) @ i
==>
// implies the adversary does not know it
not( Ex #k. K( sk_emaid ) @ k )
|
// or it is the case that a key has been revealed
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
"
// **************************** SR3 Secure Charge Authorisation ************************************
// If the eMSP accepts a charge authorisation request, then the EV that apparently
// initiated a charge process has been previously active in the protocol
lemma auth_aliveness_charge:
"
All Iss pke n1 #i .
// For all commited charge authorisations by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP( Iss, pke, n1 ) @ i
==> // Implies that the EV has previously been involved in a protocol run
(
(Ex TPM Host #k . AliveEV(TPM, Host, pke) @ k)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts a charge authorisation request, then the EV that apparently
// initiated a charge process has been previously requested a charge authorisation
// by the eMSP (however, not necessary with the same parameters n)
lemma auth_weak_agreement_charge:
"
All Iss pke n1 #i .
// For all commited charge authorisations by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP( Iss, pke, n1 ) @ i
==> // Implies that the EV has been previously requested a charge authorisation by the same eMSP
(
(Ex TPM Host n2 #j . RunningEV_Auth( TPM, Host, pke, Iss, n2 ) @ j)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts a charge authorisation request, then the EV that apparently
// initiated a charge process has been previously requested a charge authorisation
// by the eMSP and they agree on the parameters n of the request
lemma auth_non_injective_agreement_charge:
"
All Iss pke n #i .
// For all commited charge authorisations by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP( Iss, pke, n ) @ i
==> // Implies that the EV has been previously requested a charge authorisation by the same eMSP with the same parameters n
(
(Ex TPM Host #j . RunningEV_Auth( TPM, Host, pke, Iss, n ) @ j)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts a charge authorisation request, then the EV that apparently
// initiated a charge process has been previously requested a charge authorisation
// by the eMSP and they agree on the parameters n of the request
// Moreover, each commited charge authorisation by an eMSP corresponds to a unique
// request by an EV
lemma auth_injective_agreement_charge:
"
All Iss pke n #i .
// For all commited charge authorisations by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP( Iss, pke, n ) @ i
==> // Implies that the EV has been previously requested a charge authorisation by the same eMSP with the same parameters n
(
(
(Ex TPM Host #j .
(
RunningEV_Auth( TPM, Host, pke, Iss, n ) @ j
& (#j<#i)
& // And each commited charge authorisation corresponds to a unique charge authorisation request
( not(
Ex Iss2 Host2 #i2 . ( CommitEMSP( Iss2, Host2, n) @ i2 & not(#i2=#i) )
)
)
)
)
)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// **************************** SR4 Charge Data Authenticity ************************************
// If the eMSP accepts charge data, then the EV that apparently
// signed the charge data has been previously active in the protocol
lemma auth_aliveness_charge_data:
"
All Iss pke n1 #i .
// For all commited charge data receptions by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP_Data( Iss, pke, n1 ) @ i
==> // Implies that the EV has been previously active in the protocol
( (Ex TPM Host #k . AliveEV(TPM, Host, pke) @ k)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts charge data, then the EV that apparently
// signed the charge data has previously signed some charge data for this eMSP
lemma auth_weak_agreement_charge_data:
"
All Iss pke n1 #i .
// For all commited charge data receptions by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP_Data( Iss, pke, n1 ) @ i
==> // Implies that the EV previously signed charge data for this eMSP
(
(Ex TPM Host n2 #j . RunningEV_Data( TPM, Host, pke, Iss, n2 ) @ j)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts charge data, then the EV that apparently
// signed the charge data has previously signed this charge data for this eMSP
lemma auth_non_injective_agreement_charge_data:
"
All Iss pke n #i .
// For all commited charge data receptions by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP_Data( Iss, pke, n ) @ i
==> // Implies that the EV previously send a signed charge data message with the same content as received by the eMSP
(
(Ex TPM Host #j . RunningEV_Data( TPM, Host, pke, Iss, n ) @ j)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// If the eMSP accepts charge data, then the EV that apparently
// signed the charge data has previously signed this charge data for this eMSP
// Moreover, each commited charge data set by an eMSP corresponds to a unique
// protocol run of the EV
lemma auth_injective_agreement_charge_data:
"
All Iss pke n #i .
// For all commited charge data receptions by an eMSP for an EV (identified by its public endorsement key pke)
(
CommitEMSP_Data( Iss, pke, n ) @ i
==> // Implies that the EV previously send a signed charge data message with the same content as received by the eMSP
(
(
(Ex TPM Host #j .
(
RunningEV_Data( TPM, Host, pke, Iss, n ) @ j
&
(#j<#i)
&
// And each commited charge data set corresponds to a unique protocol run of the EV
( not(
Ex Iss2 Host2 #i2 . ( CommitEMSP_Data( Iss2, Host2, n) @ i2 & not(#i2=#i) )
)
)
)
)
)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
// ********************************* Unforgeability *****************************************
lemma SP3_Unforgeability_Off [heuristic=o]:
// Informal description:
// An adversary, who is in the possession of a set of Platforms’ secret keys and associated credentials,
// finds it hard to forge a valid message for a secret key and credential, which is not in that set.
// We restate this as follows: The only way a valid signature using the secret key f
// (and hence the associcated credentials) was not created by the platform is if its key or
// set of credentials was leaked.
"
All TPM Host pke bsn f sigma #t01 #t02 .
//Assume that a platform's TPM created a secret DAA key,f
DeriveDAAKey(TPM, Host, pke, f) @ t01
&
// and we have a valid deanonymised signature which used this secret f
VerifiedCertificateDeAnonymised(bsn, sigma, f) @ t02
&
//the platform's keys were not revealed
not ( Ex Event #r1 . KeyReveal(Event, TPM ) @ r1)
&
not ( Ex Event #r2 . KeyReveal(Event, Host ) @ r2)
&
not ( Ex Event #r3 . KeyReveal(Event, pke ) @ r3)
&
//and neither were the issuer's keys leaked
not ( Ex Iss #ir . KeyReveal('Issuer_KeyReveal', Iss ) @ ir)
==>
//then the platform must have sent out the message
(Ex #t03 . Host_Sends_Certified_Q_K(TPM, Host, pke, sigma) @ t03)
"
//------------------
/*
test_auth_non_injective_agreement_CP_sessKey (all-traces): verified (39 steps)
test_auth_non_injective_agreement_CP (all-traces): verified (34 steps)
test_auth_injective_agreement_CP (all-traces): verified (90 steps)
test_test1 (all-traces): verified (38 steps)
test_test2 (all-traces): verified (74 steps)
test_test (all-traces): verified (82 steps)
test_new_test_CP_sessKey (all-traces): verified (42 steps)
test_new_test2 (all-traces): verified (35 steps)
test_new_auth_non_injective_agreement_CP_data (all-traces): verified (41 steps)
test_new_auth_injective_agreement_CP_data (all-traces): verified (43 steps)
==============================================================================
real 4m3,337s
user 21m27,048s
sys 5m8,335s
*/
lemma test_auth_non_injective_agreement_CP_sessKey [heuristic=o]:
"
All CP g n #i .
(
(
CommitCP( CP, pk(g), n ) @ i
)
==>
(
// Implies there exists a running issuer on the same term
(Ex TPM Host #j . DeriveSessionKey( TPM, Host, g ) @ j)
|
(Ex sigma f #j #kr .
VerifiedCertificate2( CP, sigma, pk(g), f ) @ j
& KeyReveal('TPM_DAAReveal_f', f) @ kr)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
lemma test_auth_non_injective_agreement_CP:
"
All CP g n TPM Host #i #i2 .
(
(
CommitCP( CP, pk(g), n ) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
)
==>
(
// Implies there exists a running issuer on the same term
(Ex #j . RunningEV_Sign2( TPM, Host, CP, n ) @ j)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
lemma test_auth_injective_agreement_CP:
"
All CP g n TPM Host #i #i2 .
(
(
CommitCP( CP, pk(g), n ) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
)
==>
(
// Implies there exists a running issuer on the same term
(
Ex #j . RunningEV_Sign2( TPM, Host, CP, n ) @ j
&
(#j<#i)
&
// And each commited JOIN session corresponds to a unique issuer run
( not(
Ex CP2 g2 #i3 . ( CommitCP( CP2, pk(g2), n) @ i3 & not(#i3=#i) )
)
)
)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
//New:
/*
test_new_test_CP_sessKey (all-traces): verified (42 steps)
test_new_test2 (all-traces): verified (35 steps)
test_new_auth_non_injective_agreement_CP_data (all-traces): verified (41 steps)
test_new_auth_injective_agreement_CP_data (all-traces): verified (43 steps)
*/
lemma test_new_test_CP_sessKey [heuristic=o]:
"
All CP g sk_emaid #i .
(
(
CP_DataRec2( CP, pk(g), sk_emaid ) @ i
)
==>
(
// Implies there exists a running issuer on the same term
(Ex TPM Host #j . DeriveSessionKey( TPM, Host, g ) @ j)
|
(Ex sigma f #j #kr .
VerifiedCertificate2( CP, sigma, pk(g), f ) @ j
& KeyReveal('TPM_DAAReveal_f', f) @ kr)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
)
)
"
lemma test_key_tpm_binding_test2 [heuristic=o]:
"
All CP g sk_emaid TPM Host #i #i2 .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
CP_DataRec2( CP, pk(g), sk_emaid ) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
==> // Implies that an issuer has previously been involved in a protocol run
( (Ex TPM Host #k2 .
EMAIDkey_Imported2(TPM, Host, sk_emaid) @k2)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
lemma test_new_auth_non_injective_agreement_CP_data [heuristic=o]:
"
All CP g dataTBS TPM Host #i #i2 .
(
(
CP_DataRec3(CP, pk(g), dataTBS) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
)
==>
(
// Implies there exists a running issuer on the same term
(
Ex #j . RunningEV_Data3( TPM, Host, CP, dataTBS ) @ j
&
(#j<#i)
)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
lemma test_new_auth_injective_agreement_CP_data [heuristic=o]:
"
All CP g dataTBS TPM Host #i #i2 .
(
(
CP_DataRec3(CP, pk(g), dataTBS) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
)
==>
(
// Implies there exists a running issuer on the same term
(
Ex #j . RunningEV_Data3( TPM, Host, CP, dataTBS ) @ j
&
(#j<#i)
&
// And each commited JOIN session corresponds to a unique issuer run
( not(
Ex CP2 g2 #i3 . ( CP_DataRec3( CP2, pk(g2), dataTBS) @ i3 & not(#i3=#i) )
)
)
)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
lemma test_auth_injective_agreement_CP_test2 [heuristic=o]:
"
All CP Iss tM_auth g TPM Host #i #i2 .
CommitCP3( CP, Iss, tM_auth, pk(g)) @ i
&
DeriveSessionKey(TPM, Host, g) @ i2
)
==>
(
// Implies there exists a running issuer on the same term
(
Ex pke #j . EMSP_Offline_Calc2(Iss, CP, pke, tM_auth) @ j
&
(#j<#i)
&
// And each commited JOIN session corresponds to a unique issuer run
( not(
Ex CP2 Iss2 g2 #i3 . ( CommitCP3( CP2, Iss2, tM_auth, pk(g2)) @ i3 & not(#i3=#i)
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
&
not(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i3))
)
)
)
|
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr & Honest(Entity) @ i)
|
(Ex RevealEvent #kr . KeyReveal(RevealEvent, TPM) @ kr)
)
)
"
//--------------------
/*
test1 (all-traces): verified (2560 steps)
==============================================================================
real 68m15,750s
user 164m30,666s
sys 114m23,677s
test2 (all-traces): verified (1285 steps)
==============================================================================
real 25m38,519s
user 67m8,266s
sys 42m21,408s
test (all-traces): verified (115 steps)
==============================================================================
real 3m18,929s
user 14m9,277s
sys 3m55,545s
*/
lemma test_test1[reuse, heuristic=o]:
"
All CP g sk_emaid #i .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
CP_DataRec2(CP, pk(g), sk_emaid) @ i
==> // Implies that an issuer has previously been involved in a protocol run
( (Ex TPM Host #k .
DeriveSessionKey(TPM, Host, g) @ k)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr)
)
)
"
lemma test_test2[reuse, hide_lemma=test1, heuristic=o]:
"
All CP g sk_emaid #i .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
CP_DataRec2(CP, pk(g), sk_emaid) @ i
==> // Implies that an issuer has previously been involved in a protocol run
( (Ex TPM Host #k2 .
EMAIDkey_Imported2(TPM, Host, sk_emaid) @k2)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr)
)
)
"
lemma test_test:
"
All CP g sk_emaid #i .
// For all commited JOIN sessions running between a platform and issuer on the term(s) n
(
CP_DataRec2(CP, pk(g), sk_emaid) @ i
==> // Implies that an issuer has previously been involved in a protocol run
( (Ex TPM Host #k #k2 .
DeriveSessionKey(TPM, Host, g) @ k
&
EMAIDkey_Imported2(TPM, Host, sk_emaid) @k2)
|
// or there has been a key reveal of the entities involved in the Commit
(Ex RevealEvent Entity #kr . KeyReveal(RevealEvent, Entity) @ kr)
)
)
"
end