Skip to content
Snippets Groups Projects
daa_pnc_anonymity_ev_users_locations.spthy 12.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Timm Lauser's avatar
    Timm Lauser committed
    theory DAA_PnC_Anonymity_EV_Users_Locations
    begin
    
    /*
      Protocol:	DAA_PnC
      Properties:	Weaker version of PR4 - Anonymity of EV Users and Locations
    
    This Tamarin model is used to verify the privacy of the charge data authentication process
    for the Direct Anonymous Authentication (DAA) based privacy extentsion of the
    Plug and Charge (PnC) authentication system. The extension is described in the
    paper "Integrating Privacy into the Electric Vehicle Charging Architecture".
    
    It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by
    Original Authors:
    	Liqun Chen, Surrey Centre for Cyber Security, University of Surrey
    	Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey
    	Ralf Sasse, Department of Computer Science, ETH Zurich
    	Helen Treharne, Surrey Centre for Cyber Security, University of Surrey
    	Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey
    	Jorden Whitefield, Ericsson AB, Finland
    cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA
    
    
    time tamarin-prover interactive daa_pnc_anonymity_ev_users_locations.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_ev_users_locations.py +RTS -N8 -RTS
    
    time tamarin-prover daa_pnc_anonymity_ev_users_locations.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_ev_users_locations.py\
    
     --prove=diff_correctness +RTS -N8 -RTS
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    
    time tamarin-prover daa_pnc_anonymity_ev_users_locations.spthy\
     --quit-on-warning --diff --heuristic=O\
    
     --oraclename=ObsEquOracle_ev_users_locations.py\
    
    Timm Lauser's avatar
    Timm Lauser committed
     --prove +RTS -N8 -RTS
    
    
    ==============================================================================
    summary of summaries:
    
    analyzed: daa_pnc_anonymity_ev_users_locations.spthy
    
    
      RHS :  diff_correctness (exists-trace): verified (9 steps)
      LHS :  diff_correctness (exists-trace): verified (9 steps)
      DiffLemma:  Observational_equivalence : verified (13191 steps)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    ==============================================================================
    
    
    real	42m48,143s
    user	100m43,897s
    sys	74m14,457s
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    
    */
    
    builtins:   asymmetric-encryption, symmetric-encryption, signing, hashing, multiset//, diffie-hellman//
    
    functions:  MAC/2, KDF_EK/1,KDF_a/3, KDF_e/4, multp/2, plus/2, //len16/1, 
                 H_SHA256/1, H_n_8/8, curlyK/1, RB/2, RD/2, PkX/2, PkY/2,
    			 E_S/2, H_k_7/7,
    			 H_n_2/2, H_k_2/2, Nonce/1, H_6/1
    			 
    
    // Protocol Restrictions (Axioms)
    
    restriction equality: 	     "All #i    x y    .  Eq( x, y ) @ i ==> x = y"
    
    // each authorisation nonce i_x is only accepted once
    restriction only_once_ix: "All event i_x #i #j . (OnlyOnce_ix(event, i_x) @ i & OnlyOnce_ix(event, i_x) @ j) ==> (#i=#j)" 
    
    //the 'Issuer' should only be initialised once
    restriction single_issuer_single_init:
    	"All #i #j . (Issuer_Init() @ i & Issuer_Init() @ j) ==> (#i=#j)"
    
    
    // Initialisation of the eMSP (the DAA Issuer) and the CCH (acting as CPS)
    rule Issuer_Init:
    		let 
    			I=$Iss
    			pkX=PkX(~x,'P2')
    			pkY=PkY(~y,'P2')
    		in
    		[ Fr(~x)
    			, Fr(~y)
    			, Fr(~cps)
    		]
    		--[Issuer_Init()
    			, OnlyOnce('Issuer_Init')]->
    		[ !Ltk(I,~x, ~y)
    			, !Pk(I, pkX,pkY)
    			, Out(<pkX,pkY>)
    			, Out(<~x,~y>)  //adversary (honest-but-curious eMSP) knows this data
    			, !LtkCPS($CPS_I,~cps)
    			, !PkCPS($CPS_I, pk(~cps))
    			, Out(pk(~cps))
    		]
    
    
    /*
    In this model, a EV authenticates a charge data records (CDRs), either for
    a charging session at CP1 or CP2.
    The question is: Can the adversary decide whether the CDR originates from
    charging session from CP1 or CP2?
    The identity data of the CPs is controlled by the adversary but the adversary
    does not know which CDR is authenticated by the EV.
    */
    
    // We generate a credential request for an EV
    rule EV_Generate_Credential_Requests:
    	let
    		//inputs from Issuer PK
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		
    		//TPM1 details		
    		e1=KDF_EK(~TPM_EK_Seed1)
    		pke1=pk(e1)
    		E_PD1=<'EK_public_data',pke1>
    		PC_PD1=<'PC_public_data',pk(~pc1)>
    		Q1=multp(~f1, 'P1')
    		Q_PD1=<'DAA_public_data', Q1>
    
    		m1=<pke1,pk(~pc1), Q_PD1, ~res_n1, 'join_Issuer_1'>
    		signed_m1=H_SHA256(<m1, pk(cps), n1>) // In(n)
    		sig_over_m1=sign(signed_m1,~pc1)
    
    		m_out1=aenc(<sig_over_m1,m1>,pk(cps))
    
    
      in
            [	//Issuer details
    			!Pk(I,pkX,pkY)		//the issuer's public key
    			, !PkCPS(CPS_I, pk(cps))		//the issuer's public key
    
    			, In(n1)
    			//, In(n2)
    			
    			, Fr(~TPM_EK_Seed1)
    			, Fr(~pc1)
    			, Fr(~f1)
    			, Fr(~res_n1)
          ]
        --[	Generate_TPM_Keys()
    			, OnlyOnce( 'Generate_TPM_Keys' )
    	]->	
    	 [	 CertReq('req1', m_out1, n1)
    		, TPM_EK_QPD('req1', <pke1, PC_PD1, Q_PD1>)
    	 ]
    
    // This rule combines the role of the CPS and eMSP in the credential issuing process
    // First, the CPS decrypts and validates the request and then the eMSP generates the
    // DAA credential for the request
    rule Issuer_Issue_Credentials:
    	let 
    		//inputs
    		Q=multp(f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    		m=<pke,pk(pc), Q_PD, res_n,'join_Issuer_1'>
    
    		signed_m=H_SHA256(<m, pk(~cps), n>)
    		m_in=aenc(<sig,m>,pk(~cps))
    
    		//inputs from Issuer PK
    		pkX=PkX(~x,'P2')
    		pkY=PkY(~y,'P2')
    				
    		//new values to be calculated
    		A=multp(~r,'P1')
    		B=multp(~y,A)
    		C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q))
    		D=multp(multp(~r,~y),Q)
    		
    		R_B=RB(~l,'P1')
    		R_D=RD(~l,Q)
    		
    		u=H_n_8('P1', Q, R_B, R_D, A, B, C, D)
    		j=plus(~l,multp(multp(~y,~r),u))
    		
    		//s_2_hat='g'^~s_2_dh //pub ecdhe key
    		//s_2_temp=pke^~s_2_dh //Z
    		s_2_hat=aenc(~s_2_dh, pke) 
    		s_2_temp=~s_2_dh
    
    		s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke)		
    		Q_N=<'SHA256',H_SHA256(Q_PD)>			//the name of the DAA key
    		k_e=KDF_a(s_2,'STORAGE',Q_N)				
    		k_h=KDF_a(s_2,'INTEGRITY','NULL')
    		curlyK_2=curlyK(~K_2)
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		//curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h)
    		curlyH=MAC(<curlyK_2_hat, Q_N>,k_h)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    
    		// for import; change rnd seed to ecdh seed?
    		seed_3_enc=aenc(~seed_3_dh, pke) 
    		seed_3_temp=~seed_3_dh
    
    		seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke)		
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid>
    		sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>)
    		sk_PD=<'SK_EMAID_public_data', sk_unique>
    		sk_N=<'SHA256',H_SHA256(sk_PD)>
    		sk_k_e=KDF_a(seed_3,'STORAGE',sk_N)				
    		sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL')
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    
    		EMSP_Cert=<I,pkX,pkY>
    
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		sig_m=sign(H_SHA256(m_out),~cps)	
    	in
         [ CertReq(req, m_in, n)
    		, !Pk(I,pkX,pkY)
    		, !Ltk(I,~x,~y)
    		, Fr(~r)
    		, Fr(~l)
    		, Fr(~s_2_dh)
    		, Fr(~K_2)
    		, Fr(~sk_emaid), Fr(~seed_3_dh), Fr(~obfuscationValue) // for import
    		, !PkCPS(CPS_I,pk(~cps))
    		, !LtkCPS(CPS_I, ~cps)
    	 ] 
    	 --[ Eq(verify(sig,signed_m,pk(pc)), true)	
    	 	, CreateRes(req)
    	 	, CreateResSig(sig_m)
    		, OnlyOnce(<'Issuer_Verify_Challenge', req>)
    		]->
    	 [ CertRes(req, m_in, n, m_out, sig_m)
    
    		, Out(<sk_SENSITIVE, <A,B,C,D,u,j>, m>) //adversary (honest-but-curious eMSP) knows this data
    
    Timm Lauser's avatar
    Timm Lauser committed
    	 ]	
    
    // The CPS receives the credential responses from the eMSP
    // The CPS then signs the response, forwards it
    // to the EV and outputs the public data to the adversary
    rule Cert_Res:
    	let
    		m1=<pke1,pk(~pc1), Q_PD1, res_n1, 'join_Issuer_1'>
    		m_in1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		sk_DUP1=<sk_PD1, sk_SENSITIVE_hmac1, sk_SENSITIVE_enc1, seed_3_enc1>
    		m_out1=<EMSP_Cert1, curlyH1, curlyK_2_hat1, s_2_hat1, C_hat1, sk_DUP1, res_n1, 'Host_CompleteJoin'>
    		sig_m1=sign(H_SHA256(m_out1),cps)
    	in
         [ 
    		CertRes('req1', m_in1, n1, m_out1, sig_m1)
    		, TPM_EK_QPD('req1',<pke1, PC_PD1, Q_PD1>)
    		, !PkCPS(CPS_I,pk(cps))
    	] 
    	 --[ 
    		Eq(verify(sig_m1,H_SHA256(m_out1),pk(cps)), true)	
    		, Cert_Res()
    		, OnlyOnce('Cert_Res')
    		]->
    	 [
    	 	!EV_Start_Auth( <'req1', m_in1, n1, m_out1, sig_m1, <pke1, PC_PD1, Q_PD1>> )
    		, Out(<'FirstTPM', pke1, PC_PD1, Q_PD1, sk_PD1>)
    	 ]	
    
    // There are two different charge points CP1 and CP2. The EV either charges at CP1 or at CP2
    // (diff property). The question is if the eMSP can distinguish whether the CDR
    // comes from a charging session at CP1 or CP2.
    rule Two_CP:
    	let
    		CP_DIFF=diff( <$CP1, sid1, <nonce1, nonce_ix1>, <'charge_data', dataID1>>,
    		 			  <$CP2, sid2, <nonce2, nonce_ix2>, <'charge_data', dataID2>>)
    	in
         [  In(<$CP1, sid1, <nonce1, not_nonce_ix1>, <'charge_data', not_dataID1>>)
    		, In(<$CP2, sid2, <nonce2, not_nonce_ix2>, <'charge_data', not_dataID2>>)
    		//shuffle the values that may be adversary controlled (by CP) but cannot be used by CCH/eMSP to distinguish charge locations
    		, In(<<nonce_ix1 + nonce_ix2>, <dataID1 + dataID2>>)
    	 ] 
    	 --[ Two_CP()
    		, OnlyOnce('Two_CP')
    		]->
    	 [ CP_In(CP_DIFF) ]	
    
    
    // The EV obtains a credential response (the rule is executed twice, once either for TPM1 or TPM2 (diff property)
    // and one for TPM2.) as well as charge data from the adversary (impersonating the CP)
    // The EV then uses the obtained credential to authenticate the charge data and sends the
    // authenticated data back to the adversary
    rule EV_Auth:
    	let
    		CP_DIFF=<$CP, sid, <nonce, nonce_ix>, <'charge_data', dataID>>
    
    		e=KDF_EK(~TPM_EK_Seed)
    		//pke1='g'^e1
    		pke=pk(e)
    		E_PD=<'EK_public_data',pke>
    		PC_PD=<'PC_public_data',pk(pc)>
    		Q=multp(~f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    
    
    		i_x=h(<~i_x_t, pke>)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		m=<pke,pk(pc), Q_PD, res_n, 'join_Issuer_1'>
    		signed_m=H_SHA256(<m, pk(cps), n>) 
    		m_in=aenc(<sig_over_m,m>,pk(cps))
    
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		EMSP_Cert=<I,pkX,pkY>
    
    		A=multp(r,'P1')
    		B=multp(y,A)
    		C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
    		D=multp(multp(r,y),Q)	
    
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', obfuscationValue, sk_emaid>
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    
    		Auth=<req, m_in, n, m_out, sig_m, <pke, PC_PD, Q_PD>>
    
    		//Host_Randomise_Credentials
    		/*
    		bsn='bottom'
    		R=multp(~l,A)
    		S=multp(~l,B)
    		T=multp(~l,C)
    		W=multp(~l,D)
    		s_2_bar=bsn
    		y_2=bsn
    
    		//TPM2_Commit
    		E=E_S(~r_cv1,S)*/
    
    		//TPM_Create_Session_Key
    
    		pkCCsess=pk(~g)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		/*
    
    		Qk_PD=<'SessionKey_public_data', pkCCsess>
    
    Timm Lauser's avatar
    Timm Lauser committed
    		Qk_n=<'SHA256',H_SHA256(Qk_PD)>
    		Qk_SD=senc(~g,aes_key)
    
    		//Host_Load_Qk_For_Ceritfication
    		credData='CredentialData'
    		c=H_k_7(credData,R,S,T,W,E, sid)*/
    		m_buffer=<'00',i_x>
    
    		//TPM2_Load_And_Certify
    		/*N1=QName('SHA256',H_SHA256('root'))
    		N2=QName('SHA256',H_SHA256(E_PD))
    		N3=H_SHA256(<N1, N2>)
    		Qk_QualName=H_SHA256(<N3, Qk_n>)*/
    		/*
    		curlyA=<'certificationData', Qk_n>//, Qk_n, Qk_QualName>
    		credData='CredentialData'
    		small_c=H_k_7(credData,R,S,T,W,E, sid)
    		h1=H_k_2(small_c, H_6(curlyA))
    		n_C=Nonce(~rnd_n_C)
    		h2=H_n_2(n_C, h1)
    		small_s=plus(~r_cv1, multp(h2, ~f))*/
    
    		//TPM2_HMAC1
    
    		tM_id=MAC(m_buffer, sk_emaid)
    		M_id=h(tM_id)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Receive_Certified_Q_k
    		//sigma_K=<Qk_PD, curlyA, bsn, R, S, T, W, h2, small_s, n_C>
    
    		//auth_m1=<EMSP_Cert, M_id,  sigma_K, 'TPM_Certificate_Of_Q_K'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Auth
    		m_buffer2=<'01',i_x>
    
    		//TPM2_HMAC2
    		M_auth=MAC(m_buffer2, sk_emaid)
    
    		//Host_Auth2
    
    		tM_auth=h(<M_auth, nonce_ix>)
    		//authH=h(<$CP, nonce, tM_auth>) 
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//TPM2_Sign_SessionKey
    		//sig_over_auth=sign(authH,~g)
    
    		//Host_Auth3
    
    		//auth_m2=<authH, sig_over_auth, ~i_x, tM_auth, 'AuthorizationReq'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		// CP_Verify
    
    		auth_m_emsp=<I, M_id, nonce_ix, tM_auth, pkCCsess, 'EMSP_Auth'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//EV_DataSign
    
    		ev_h=h(<'EV_h',M_auth,pkCCsess>)
    		dataTBS=h(<'charge_data', dataID, ev_h>)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		dataSig=sign(dataTBS,~g)
    
    		//CP_DataRec
    		data_m=<I, 'charge_data', dataID, dataSig>
    	in
         [ 
    	 	!EV_Start_Auth(Auth)
    		, !PkCPS(CPS_I,pk(cps))
    		//, Fr(~l)
    		//, Fr(~r_cv1)
    		, Fr(~g) 
    
    		, In(~i_x_t) //In & onlyonce
    
    Timm Lauser's avatar
    Timm Lauser committed
    		//, !CP_Init($CP)
    		, CP_In(CP_DIFF)
    		//, In(<$CP, sid>)
    		, Fr(~rnd_n_C)		
    	] 
    	 --[ 
    		Eq(verify(sig_m,H_SHA256(m_out),pk(cps)), true)
    		, Eq(verify(sig_over_m,signed_m,pk(pc)), true)
    		, EV_Auth(req)
    		, OnlyOnce(<'EV_Auth', req>)
    		, OnlyOnce_ix('EV_Auth', i_x)
    		]->
    	 [
    		Out(<auth_m_emsp, data_m>)
    	 ]	
    
    
    
    
    lemma diff_correctness: exists-trace
    
    Timm Lauser's avatar
    Timm Lauser committed
    "	Ex #t1 #t3 #t4 #t5 #t6 #t7 .
    		Issuer_Init() @ t1
    		& Generate_TPM_Keys() @ t3
    		& CreateRes('req1') @ t4
    		& Cert_Res() @ t5
    		& Two_CP() @ t6
    		& EV_Auth('req1') @ t7
    		& #t1<#t3
    		& #t3<#t4
    		& #t4<#t5
    		& #t5<#t6
    		& #t6<#t7
    		
    		
    		//restrict rules to only run once in a trace
    		& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
    "
    
    end