Skip to content
Snippets Groups Projects
daa_pnc_anonymity_charge_authorisation.spthy 13 KiB
Newer Older
  • Learn to ignore specific revisions
  • theory DAA_PnC_Anonymity_Charge_Authorization
    
    Timm Lauser's avatar
    Timm Lauser committed
    begin
    
    /*
      Protocol:	DAA_PnC
      Properties:	Weaker version of PR2 - Anonymous Charge Authorization
    
    This Tamarin model is used to verify the privacy of the charge authorisation process
    for the Direct Anonymous Authentication (DAA) based privacy extentsion of the
    Plug and Charge (PnC) authentication system. The extension is described in the
    paper "Integrating Privacy into the Electric Vehicle Charging Architecture".
    
    It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by
    Original Authors:
    	Liqun Chen, Surrey Centre for Cyber Security, University of Surrey
    	Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey
    	Ralf Sasse, Department of Computer Science, ETH Zurich
    	Helen Treharne, Surrey Centre for Cyber Security, University of Surrey
    	Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey
    	Jorden Whitefield, Ericsson AB, Finland
    cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA
    
    
    time tamarin-prover interactive daa_pnc_anonymity_charge_authorisation.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_charge_authorisation.py +RTS -N8 -RTS
    
    time tamarin-prover daa_pnc_anonymity_charge_authorisation.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_charge_authorisation.py\
    
     --prove=diff_correctness +RTS -N8 -RTS
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    
    ==============================================================================
    summary of summaries:
    
    analyzed: daa_pnc_anonymity_charge_authorisation.spthy
    
    
      RHS :  diff_correctness (exists-trace): verified (7 steps)
      LHS :  diff_correctness (exists-trace): verified (7 steps)
      DiffLemma:  Observational_equivalence : verified (25531 steps)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    ==============================================================================
    
    
    real	117m54,696s
    user	308m21,683s
    sys	199m35,416s
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    */
    
    builtins:   asymmetric-encryption, symmetric-encryption, signing, hashing//, diffie-hellman//, multiset
    
    functions:  MAC/2, KDF_EK/1,KDF_a/3, KDF_e/4, multp/2, plus/2, //len16/1, 
                 H_SHA256/1, H_n_8/8, curlyK/1, RB/2, RD/2, PkX/2, PkY/2,
    			 E_S/2, H_k_7/7, //BSN/1,
    			 H_n_2/2, H_k_2/2, Nonce/1, H_6/1
    			 
    
    // Protocol Restrictions (Axioms)
    
    restriction equality: 	     "All #i    x y    .  Eq( x, y ) @ i ==> x = y"
    
    
    // each authorisation nonce i_x is only used once
    restriction only_once_ix: "All event i_x #i #j . (OnlyOnce_ix(event, i_x) @ i & OnlyOnce_ix(event, i_x) @ j) ==> (#i=#j)" 
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    //the 'Issuer' should only be initialised once
    restriction single_issuer_single_init:
    	"All #i #j . (Issuer_Init() @ i & Issuer_Init() @ j) ==> (#i=#j)"
    
    // Initialisation of the eMSP (the DAA Issuer) and the CCH (acting as CPS)
    // we do not allow key reveals for the issuer
    rule Issuer_Init:
    		let 
    			I=$Iss
    			pkX=PkX(~x,'P2')
    			pkY=PkY(~y,'P2')
    		in
    		[ Fr(~x)
    			, Fr(~y)
    			, Fr(~cps)
    		]
    		--[Issuer_Init()
    			, OnlyOnce('Issuer_Init')]->
    		[ !Ltk(I,~x, ~y)
    			, !Pk(I, pkX,pkY)
    			, Out(<pkX,pkY>)
    			, !LtkCPS($CPS_I,~cps)
    			, !PkCPS($CPS_I, pk(~cps))
    			, Out(pk(~cps))
    		]
    
    /*
    In this model, we install DAA credentials on two EVs. One with TPM1 and one with TPM2. We then generate
    a charge authorization requests, either for TPM1 or TPM2 (diff property).
    The question is: Can the adversary decide whether the generated charge authorisation values <auth_m1, auth_m2>
    have been generated by TPM1 or TPM2?
    */
    
    // We generate two credential requests, one for TPM1 and one for TPM2
    rule EV_Generate_Credential_Requests:
    	let
    		//inputs from Issuer PK
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		
    		//TPM1 details		
    		e1=KDF_EK(~TPM_EK_Seed1)
    		pke1=pk(e1)
    		E_PD1=<'EK_public_data',pke1>
    		PC_PD1=<'PC_public_data',pk(~pc1)>
    		Q1=multp(~f1, 'P1')
    		Q_PD1=<'DAA_public_data', Q1>
    
    		m1=<pke1,pk(~pc1), Q_PD1, ~res_n1, 'join_Issuer_1'>
    		signed_m1=H_SHA256(<m1, pk(cps), n1>) // In(n)
    		sig_over_m1=sign(signed_m1,~pc1)
    
    		m_out1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		//TPM2 details		
    		e2=KDF_EK(~TPM_EK_Seed2)
    		pke2=pk(e2)
    		E_PD2=<'EK_public_data',pke2>
    		PC_PD2=<'PC_public_data',pk(~pc2)>
    		Q2=multp(~f2, 'P1')
    		Q_PD2=<'DAA_public_data', Q2>
    
    		m2=<pke2,pk(~pc2), Q_PD2, ~res_n2, 'join_Issuer_1'>
    		signed_m2=H_SHA256(<m2, pk(cps), n2>) // In(n)
    		sig_over_m2=sign(signed_m2,~pc2)
    
    		m_out2=aenc(<sig_over_m2,m2>,pk(cps))
    
      in
            [	//Issuer details
    			!Pk(I,pkX,pkY)		//the issuer's public key
    			, !PkCPS(CPS_I, pk(cps))		//the issuer's public key
    
    			, In(n1)
    			, In(n2)
    			
    			, Fr(~TPM_EK_Seed1)
    			, Fr(~pc1)
    			, Fr(~f1)
    			, Fr(~res_n1)
    
    			, Fr(~TPM_EK_Seed2)
    			, Fr(~pc2)
    			, Fr(~f2)
    			, Fr(~res_n2)
          ]
        --[	Generate_TPM_Keys()
    			, OnlyOnce( 'Generate_TPM_Keys' )
    	]->	
    	 [
    		CertReq('req1', m_out1, n1)
    		, CertReq('req2', m_out2, n2)
    
    		, !TPM_EK_QPD('req1', <pke1, PC_PD1, Q_PD1>)
    		, !TPM_EK_QPD('req2', <pke2, PC_PD2, Q_PD2>) 
    
    Timm Lauser's avatar
    Timm Lauser committed
    	 ]
    
    // This rule combines the role of the CPS and eMSP in the credential issuing process
    // First, the CPS decrypts and validates the request and then the eMSP generates the
    // DAA credential for the request
    rule Issuer_Issue_Credentials:
    	let 
    		//inputs
    		Q=multp(f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    		m=<pke,pk(pc), Q_PD, res_n,'join_Issuer_1'>
    
    		signed_m=H_SHA256(<m, pk(~cps), n>)
    		m_in=aenc(<sig,m>,pk(~cps))
    
    		//inputs from Issuer PK
    		pkX=PkX(~x,'P2')
    		pkY=PkY(~y,'P2')
    				
    		//new values to be calculated
    		A=multp(~r,'P1')
    		B=multp(~y,A)
    		C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q))
    		D=multp(multp(~r,~y),Q)
    		
    		R_B=RB(~l,'P1')
    		R_D=RD(~l,Q)
    		
    		u=H_n_8('P1', Q, R_B, R_D, A, B, C, D)
    		j=plus(~l,multp(multp(~y,~r),u))
    		
    		//s_2_hat='g'^~s_2_dh //pub ecdhe key
    		//s_2_temp=pke^~s_2_dh //Z
    		s_2_hat=aenc(~s_2_dh, pke) //TODO
    		s_2_temp=~s_2_dh
    
    		s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke)		
    		Q_N=<'SHA256',H_SHA256(Q_PD)>			//the name of the DAA key
    		k_e=KDF_a(s_2,'STORAGE',Q_N)				
    		k_h=KDF_a(s_2,'INTEGRITY','NULL')
    		curlyK_2=curlyK(~K_2)
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		//curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h) //TODO len16
    		curlyH=MAC(<curlyK_2_hat, Q_N>,k_h)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    
    		// for import; change rnd seed to ecdh seed?
    		//seed_3_enc='g'^~seed_3_dh //pub ecdhe key
    		//seed_3_temp=pke^~seed_3_dh //Z
    		seed_3_enc=aenc(~seed_3_dh, pke) //TODO
    		seed_3_temp=~seed_3_dh
    
    		seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke)		
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid>
    		sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>)
    		sk_PD=<'SK_EMAID_public_data', sk_unique>
    		sk_N=<'SHA256',H_SHA256(sk_PD)>
    		sk_k_e=KDF_a(seed_3,'STORAGE',sk_N)				
    		sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL')
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    
    		EMSP_Cert=<I,pkX,pkY>
    
    		//TODO len16
    		//m_out=<EMSP_Cert, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		sig_m=sign(H_SHA256(m_out),~cps)	
    	in
         [ CertReq(req, m_in, n)
    		, !Pk(I,pkX,pkY)
    		, !Ltk(I,~x,~y)
    		, Fr(~r)
    		, Fr(~l)
    		, Fr(~s_2_dh)
    		, Fr(~K_2)
    		, Fr(~sk_emaid), Fr(~seed_3_dh), Fr(~obfuscationValue) // for import
    		, !PkCPS(CPS_I,pk(~cps))
    		, !LtkCPS(CPS_I, ~cps)
    	 ] 
    	 --[ Eq(verify(sig,signed_m,pk(pc)), true)	
    	 	, CreateRes(req)
    	 	, CreateResSig(sig_m)
    		, OnlyOnce(<'Issuer_Verify_Challenge', req>)
    		]->
    
    	 [ !CertRes(req, m_in, n, m_out, sig_m)
    
    Timm Lauser's avatar
    Timm Lauser committed
    	 ]	
    
    // The CPS receives two credential responses from the eMSP
    // one from TPM1 and one from TPM2
    // The CPS then signs the two responses and forwards one of them
    // to the EV (diff property)
    // and outputs the public data to the adversary
    rule Two_Cert_Res:
    	let
    
    		//TPM1 details		
    		e1=KDF_EK(~TPM_EK_Seed1)
    		pke1=pk(e1)
    		E_PD1=<'EK_public_data',pke1>
    		PC_PD1=<'PC_public_data',pk(~pc1)>
    		Q1=multp(~f1, 'P1')
    		Q_PD1=<'DAA_public_data', Q1>
    		sk_unique1=H_SHA256(<~obfuscationValue1, ~sk_emaid1>)
    		sk_PD1=<'SK_EMAID_public_data', sk_unique1>
    
    		//TPM2 details		
    		e2=KDF_EK(~TPM_EK_Seed2)
    		pke2=pk(e2)
    		E_PD2=<'EK_public_data',pke2>
    		PC_PD2=<'PC_public_data',pk(~pc2)>
    		Q2=multp(~f2, 'P1')
    		Q_PD2=<'DAA_public_data', Q2>
    		sk_unique2=H_SHA256(<~obfuscationValue2, ~sk_emaid2>)
    		sk_PD2=<'SK_EMAID_public_data', sk_unique2>
    
    
    
    Timm Lauser's avatar
    Timm Lauser committed
    		m1=<pke1,pk(~pc1), Q_PD1, res_n1, 'join_Issuer_1'>
    		m_in1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		m2=<pke2,pk(~pc2), Q_PD2, res_n2, 'join_Issuer_1'>
    		m_in2=aenc(<sig_over_m2,m2>,pk(cps))
    
    		sk_DUP1=<sk_PD1, sk_SENSITIVE_hmac1, sk_SENSITIVE_enc1, seed_3_enc1>
    		m_out1=<EMSP_Cert1, curlyH1, curlyK_2_hat1, s_2_hat1, C_hat1, sk_DUP1, res_n1, 'Host_CompleteJoin'>
    		sig_m1=sign(H_SHA256(m_out1),cps)
    		
    		sk_DUP2=<sk_PD2, sk_SENSITIVE_hmac2, sk_SENSITIVE_enc2, seed_3_enc2>
    		m_out2=<EMSP_Cert2, curlyH2, curlyK_2_hat2, s_2_hat2, C_hat2, sk_DUP2, res_n2, 'Host_CompleteJoin'>
    		sig_m2=sign(H_SHA256(m_out2),cps)
    		
    		// Difference property: The adversary cannot distinguish whether the
    		// charge authorisation request was generated with TPM1 or TPM2
    		Auth_DIFF=diff( <'req1', m_in1, n1, m_out1, sig_m1, <pke1, PC_PD1, Q_PD1>>,
    		 				<'req2', m_in2, n2, m_out2, sig_m2, <pke2, PC_PD2, Q_PD2>>)
    	in
         [ 
    
    		!CertRes('req1', m_in1, n1, m_out1, sig_m1)
    		, !CertRes('req2', m_in2, n2, m_out2, sig_m2)
    		, !TPM_EK_QPD('req1',<pke1, PC_PD1, Q_PD1>)
    		, !TPM_EK_QPD('req2',<pke2, PC_PD2, Q_PD2>) 	
    
    Timm Lauser's avatar
    Timm Lauser committed
    		, !PkCPS(CPS_I,pk(cps))
    	] 
    	 --[ 
    		Eq(verify(sig_m1,H_SHA256(m_out1),pk(cps)), true)	
    		, Eq(verify(sig_m2,H_SHA256(m_out2),pk(cps)), true)	
    		, Two_Cert_Res()
    		, OnlyOnce('Two_Cert_Res')
    		]->
    	 [
    	 	EV_Start_Auth( Auth_DIFF )	
    		, Out(<'FirstTPM', pke1, PC_PD1, Q_PD1, sk_PD1>)
    		, Out(<'SecondTPM', pke2, PC_PD2, Q_PD2, sk_PD2>)
    	 ]	
    
    // The EV obtains a credential response either for TPM1 or TPM2 (diff property)
    // It verifies the credentials and outputs the charge authrization values auth_m1 and auth_m2
    rule EV_Auth:
    	let
    		e=KDF_EK(~TPM_EK_Seed)
    		//pke1='g'^e1
    		pke=pk(e)
    		E_PD=<'EK_public_data',pke>
    		PC_PD=<'PC_public_data',pk(pc)>
    		Q=multp(~f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    
    
    		i_x=h(<~i_x_t, pke>)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		m=<pke,pk(pc), Q_PD, res_n, 'join_Issuer_1'>
    		signed_m=H_SHA256(<m, pk(cps), n>) 
    		m_in=aenc(<sig_over_m,m>,pk(cps))
    
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		EMSP_Cert=<I,pkX,pkY>
    
    		A=multp(r,'P1')
    		B=multp(y,A)
    		C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
    		D=multp(multp(r,y),Q)	
    
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', obfuscationValue, sk_emaid>
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    
    		Auth_DIFF=<req, m_in, n, m_out, sig_m, <pke, PC_PD, Q_PD>>
    
    		//Host_Randomise_Credentials
    		//bsn=BSN('bottom')
    		bsn='bottom'
    		R=multp(~l,A)
    		S=multp(~l,B)
    		T=multp(~l,C)
    		W=multp(~l,D)
    		s_2_bar=bsn
    		y_2=bsn
    
    		//TPM2_Commit
    		E=E_S(~r_cv1,S)
    
    		//TPM_Create_Session_Key
    		Qk=pk(~g)
    		Qk_PD=<'SessionKey_public_data', Qk>
    		Qk_n=<'SHA256',H_SHA256(Qk_PD)>
    		Qk_SD=senc(~g,aes_key)
    
    		//Host_Load_Qk_For_Ceritfication
    		credData='CredentialData'
    		c=H_k_7(credData,R,S,T,W,E, sid)
    		m_buffer=<'00',i_x>
    
    		//TPM2_Load_And_Certify
    		/*N1=QName('SHA256',H_SHA256('root'))
    		N2=QName('SHA256',H_SHA256(E_PD))
    		N3=H_SHA256(<N1, N2>)
    		Qk_QualName=H_SHA256(<N3, Qk_n>)*/
    		curlyA=<'certificationData', Qk_n>//, Qk_n, Qk_QualName>
    		credData='CredentialData'
    		small_c=H_k_7(credData,R,S,T,W,E, sid)
    		h1=H_k_2(small_c, H_6(curlyA))
    		n_C=Nonce(~rnd_n_C)
    		h2=H_n_2(n_C, h1)
    		small_s=plus(~r_cv1, multp(h2, ~f))
    
    		//TPM2_HMAC1
    
    		tM_id=MAC(m_buffer, sk_emaid)
    		M_id=h(tM_id)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Receive_Certified_Q_k
    		sigma_K=<Qk_PD, curlyA, bsn, R, S, T, W, h2, small_s, n_C>
    
    		auth_m1=<EMSP_Cert, M_id, E, sigma_K, 'PaymentDetailsReq'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Auth
    		m_buffer2=<'01',i_x>
    
    		//TPM2_HMAC2
    		M_auth=MAC(m_buffer2, sk_emaid)
    
    		//Host_Auth2
    
    		tM_auth=h(<M_auth, nonce_ix>)
    		authH=h(<$CP, nonce, tM_auth>) 
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//TPM2_Sign_SessionKey
    		sig_over_auth=sign(authH,~g)
    
    		//Host_Auth3
    
    		auth_m2=<authH, sig_over_auth, tM_auth, 'AuthorizationReq'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    	in
         [ 
    	 	EV_Start_Auth(Auth_DIFF)
    		, !PkCPS(CPS_I,pk(cps))
    		, Fr(~l)
    		, Fr(~r_cv1)
    		, Fr(~g) 
    
    		, In(~i_x_t)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		, In(<$CP, sid, <nonce, nonce_ix>, <'charge_data', dataID>>)
    		, Fr(~rnd_n_C)
    		
    	] 
    	 --[ 
    		Eq(verify(sig_m,H_SHA256(m_out),pk(cps)), true)
    		, Eq(verify(sig_over_m,signed_m,pk(pc)), true)
    		, EV_Auth()
    		, OnlyOnce('EV_Auth')
    
    		, OnlyOnce_ix('EV_Auth', i_x)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		]->
    	[ 
    		Out(<auth_m1, auth_m2>)
    	]	
    
    
    
    
    lemma diff_correctness: exists-trace
    
    Timm Lauser's avatar
    Timm Lauser committed
    "	Ex #t1 #t3 #t4 #t5 #t6 #t7 .
    		Issuer_Init() @ t1
    		& Generate_TPM_Keys() @ t3
    		& CreateRes('req1') @ t4
    		& CreateRes('req2') @ t5
    		& Two_Cert_Res() @ t6
    		& EV_Auth() @ t7
    		& #t1<#t3
    		& #t3<#t4
    		& #t4<#t5
    		& #t5<#t6
    		& #t6<#t7
    		
    		//and we had no key reveal
    		
    		//restrict rules to only run once in a trace
    		& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
    "
    
    end