Skip to content
Snippets Groups Projects
daa_pnc_anonymity_cdrs.spthy 12.4 KiB
Newer Older
  • Learn to ignore specific revisions
  • theory DAA_PnC_Anonymity_Charge_Data_Records
    
    Timm Lauser's avatar
    Timm Lauser committed
    begin
    
    /*
      Protocol:	DAA_PnC
    
    Timm Lauser's avatar
    Timm Lauser committed
      Properties:	Weaker version of PR3 - Anonymous CDRs
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    This Tamarin model is used to verify the privacy of the charge data authentication process
    for the Direct Anonymous Authentication (DAA) based privacy extentsion of the
    Plug and Charge (PnC) authentication system. The extension is described in the
    paper "Integrating Privacy into the Electric Vehicle Charging Architecture".
    
    It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by
    Original Authors:
    	Liqun Chen, Surrey Centre for Cyber Security, University of Surrey
    	Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey
    	Ralf Sasse, Department of Computer Science, ETH Zurich
    	Helen Treharne, Surrey Centre for Cyber Security, University of Surrey
    	Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey
    	Jorden Whitefield, Ericsson AB, Finland
    cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA
    
    
    time tamarin-prover interactive daa_pnc_anonymity_cdrs.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_cdrs.py +RTS -N8 -RTS
    
    time tamarin-prover daa_pnc_anonymity_cdrs.spthy\
     --quit-on-warning --diff --heuristic=O\
     --oraclename=ObsEquOracle_cdrs.py\
    
     --prove=diff_correctness +RTS -N8 -RTS
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    
    ==============================================================================
    summary of summaries:
    
    analyzed: daa_pnc_anonymity_cdrs.spthy
    
    
      RHS :  diff_correctness (exists-trace): verified (4 steps)
      LHS :  diff_correctness (exists-trace): verified (4 steps)
      DiffLemma:  Observational_equivalence : verified (8901 steps)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    ==============================================================================
    
    
    real	25m27,863s
    user	64m33,939s
    sys	49m34,617s
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    */
    
    builtins:   asymmetric-encryption, symmetric-encryption, signing, hashing//, diffie-hellman//, multiset
    
    functions:  MAC/2, KDF_EK/1,KDF_a/3, KDF_e/4, multp/2, plus/2, //len16/1, 
                 H_SHA256/1, H_n_8/8, curlyK/1, RB/2, RD/2, PkX/2, PkY/2,
    			  E_S/2, H_k_7/7, 
    			 H_n_2/2, H_k_2/2, Nonce/1, H_6/1
    			 
    
    // Protocol Restrictions (Axioms)
    
    restriction equality: 	     "All #i    x y    .  Eq( x, y ) @ i ==> x = y"
    
    //the 'Issuer' should only be initialised once
    restriction single_issuer_single_init:
    	"All #i #j . (Issuer_Init() @ i & Issuer_Init() @ j) ==> (#i=#j)"
    
    
    // Initialisation of the eMSP (the DAA Issuer) and the CCH (acting as CPS)
    // we do not allow key reveals for the issuer
    rule Issuer_Init:
    		let 
    			I=$Iss
    			pkX=PkX(~x,'P2')
    			pkY=PkY(~y,'P2')
    		in
    		[ Fr(~x)
    			, Fr(~y)
    			, Fr(~cps)
    		]
    		--[Issuer_Init()
    			, OnlyOnce('Issuer_Init')]->
    		[ !Ltk(I,~x, ~y)
    			, !Pk(I, pkX,pkY)
    			, Out(<pkX,pkY>)
    			, !LtkCPS($CPS_I,~cps)
    			, !PkCPS($CPS_I, pk(~cps))
    			, Out(pk(~cps))
    		]
    
    /*
    In this model, we install DAA credentials on two EVs. One with TPM1 and one with TPM2. We then obtain a charge
    data from the adversary (acting as CP). It is either authenticated by TPM1 or TPM2 (diff property).
    The question is: Can the adversary decide whether the CDR was authenticated by TPM1 or TPM2?
    */
    
    // We generate two credential requests, one for TPM1 and one for TPM2
    rule EV_Generate_Credential_Requests:
    	let
    		//inputs from Issuer PK
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		
    		//TPM1 details		
    		e1=KDF_EK(~TPM_EK_Seed1)
    		pke1=pk(e1)
    		E_PD1=<'EK_public_data',pke1>
    		PC_PD1=<'PC_public_data',pk(~pc1)>
    		Q1=multp(~f1, 'P1')
    		Q_PD1=<'DAA_public_data', Q1>
    
    		m1=<pke1,pk(~pc1), Q_PD1, ~res_n1, 'join_Issuer_1'>
    		signed_m1=H_SHA256(<m1, pk(cps), n1>) // In(n)
    		sig_over_m1=sign(signed_m1,~pc1)
    
    		m_out1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		//TPM2 details		
    		e2=KDF_EK(~TPM_EK_Seed2)
    		pke2=pk(e2)
    		E_PD2=<'EK_public_data',pke2>
    		PC_PD2=<'PC_public_data',pk(~pc2)>
    		Q2=multp(~f2, 'P1')
    		Q_PD2=<'DAA_public_data', Q2>
    
    		m2=<pke2,pk(~pc2), Q_PD2, ~res_n2, 'join_Issuer_1'>
    		signed_m2=H_SHA256(<m2, pk(cps), n2>) // In(n)
    		sig_over_m2=sign(signed_m2,~pc2)
    
    		m_out2=aenc(<sig_over_m2,m2>,pk(cps))
    
      in
            [	//Issuer details
    			!Pk(I,pkX,pkY)		//the issuer's public key
    			, !PkCPS(CPS_I, pk(cps))		//the issuer's public key
    
    			, In(n1)
    			, In(n2)
    			
    			, Fr(~TPM_EK_Seed1)
    			, Fr(~pc1)
    			, Fr(~f1)
    			, Fr(~res_n1)
    
    			, Fr(~TPM_EK_Seed2)
    			, Fr(~pc2)
    			, Fr(~f2)
    			, Fr(~res_n2)
          ]
        --[	Generate_TPM_Keys()
    			, OnlyOnce( 'Generate_TPM_Keys' )
    	]->	
    	 [
    		CertReq('req1', m_out1, n1)
    		, CertReq('req2', m_out2, n2)
    		, TPM_EK_QPD('req1', <pke1, PC_PD1, Q_PD1>)
    		, TPM_EK_QPD('req2', <pke2, PC_PD2, Q_PD2>) 
    	 ]
    
    // This rule combines the role of the CPS and eMSP in the credential issuing process
    // First, the CPS decrypts and validates the request and then the eMSP generates the
    // DAA credential for the request
    rule Issuer_Issue_Credentials:
    	let 
    		//inputs
    		Q=multp(f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    		m=<pke,pk(pc), Q_PD, res_n,'join_Issuer_1'>
    
    		signed_m=H_SHA256(<m, pk(~cps), n>)
    		m_in=aenc(<sig,m>,pk(~cps))
    
    		//inputs from Issuer PK
    		pkX=PkX(~x,'P2')
    		pkY=PkY(~y,'P2')
    				
    		//new values to be calculated
    		A=multp(~r,'P1')
    		B=multp(~y,A)
    		C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q))
    		D=multp(multp(~r,~y),Q)
    		
    		R_B=RB(~l,'P1')
    		R_D=RD(~l,Q)
    		
    		u=H_n_8('P1', Q, R_B, R_D, A, B, C, D)
    		j=plus(~l,multp(multp(~y,~r),u))
    		
    		//s_2_hat='g'^~s_2_dh //pub ecdhe key
    		//s_2_temp=pke^~s_2_dh //Z
    		s_2_hat=aenc(~s_2_dh, pke) 
    		s_2_temp=~s_2_dh
    
    		s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke)		
    		Q_N=<'SHA256',H_SHA256(Q_PD)>			//the name of the DAA key
    		k_e=KDF_a(s_2,'STORAGE',Q_N)				
    		k_h=KDF_a(s_2,'INTEGRITY','NULL')
    		curlyK_2=curlyK(~K_2)
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		//curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h)
    		curlyH=MAC(<curlyK_2_hat, Q_N>,k_h)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    
    		seed_3_enc=aenc(~seed_3_dh, pke) 
    		seed_3_temp=~seed_3_dh
    
    		seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke)		
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid>
    		sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>)
    		sk_PD=<'SK_EMAID_public_data', sk_unique>
    		sk_N=<'SHA256',H_SHA256(sk_PD)>
    		sk_k_e=KDF_a(seed_3,'STORAGE',sk_N)				
    		sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL')
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    
    		EMSP_Cert=<I,pkX,pkY>
    
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    		sig_m=sign(H_SHA256(m_out),~cps)	
    	in
         [ CertReq(req, m_in, n)
    		, !Pk(I,pkX,pkY)
    		, !Ltk(I,~x,~y)
    		, Fr(~r)
    		, Fr(~l)
    		, Fr(~s_2_dh)
    		, Fr(~K_2)
    		, Fr(~sk_emaid), Fr(~seed_3_dh), Fr(~obfuscationValue) // for import
    		, !PkCPS(CPS_I,pk(~cps))
    		, !LtkCPS(CPS_I, ~cps)
    	 ] 
    	 --[ Eq(verify(sig,signed_m,pk(pc)), true)	
    	 	, CreateRes(req)
    	 	, CreateResSig(sig_m)
    		, OnlyOnce(<'Issuer_Verify_Challenge', req>)
    		]->
    	 [ CertRes(req, m_in, n, m_out, sig_m)
    	 ]	
    
    // The CPS receives two credential responses from the eMSP
    // one from TPM1 and one from TPM2
    // The CPS then signs the two responses and forwards one of them
    // to the EV (diff property) together with an additional one of TPM2
    // and outputs the public data to the adversary
    rule Two_Cert_Res:
    	let
    		m1=<pke1,pk(~pc1), Q_PD1, res_n1, 'join_Issuer_1'>
    		m_in1=aenc(<sig_over_m1,m1>,pk(cps))
    
    		m2=<pke2,pk(~pc2), Q_PD2, res_n2, 'join_Issuer_1'>
    		m_in2=aenc(<sig_over_m2,m2>,pk(cps))
    
    		sk_DUP1=<sk_PD1, sk_SENSITIVE_hmac1, sk_SENSITIVE_enc1, seed_3_enc1>
    		m_out1=<EMSP_Cert1, curlyH1, curlyK_2_hat1, s_2_hat1, C_hat1, sk_DUP1, res_n1, 'Host_CompleteJoin'>
    		sig_m1=sign(H_SHA256(m_out1),cps)
    		
    		sk_DUP2=<sk_PD2, sk_SENSITIVE_hmac2, sk_SENSITIVE_enc2, seed_3_enc2>
    		m_out2=<EMSP_Cert2, curlyH2, curlyK_2_hat2, s_2_hat2, C_hat2, sk_DUP2, res_n2, 'Host_CompleteJoin'>
    		sig_m2=sign(H_SHA256(m_out2),cps)
    		
    		// Difference property: The adversary cannot distinguish whether the
    		// charge authorisation request (and the CDR) was generated with TPM1 or TPM2
    		Auth_DIFF=diff( <'req1', m_in1, n1, m_out1, sig_m1, <pke1, PC_PD1, Q_PD1>>,
    		 				<'req2', m_in2, n2, m_out2, sig_m2, <pke2, PC_PD2, Q_PD2>>)
    	in
         [ 
    		CertRes('req1', m_in1, n1, m_out1, sig_m1)
    		, CertRes('req2', m_in2, n2, m_out2, sig_m2)
    		, TPM_EK_QPD('req1',<pke1, PC_PD1, Q_PD1>)
    		, TPM_EK_QPD('req2',<pke2, PC_PD2, Q_PD2>) 	
    		, !PkCPS(CPS_I,pk(cps))
    	] 
    	 --[ 
    		Eq(verify(sig_m1,H_SHA256(m_out1),pk(cps)), true)	
    		, Eq(verify(sig_m2,H_SHA256(m_out2),pk(cps)), true)	
    		, Two_Cert_Res()
    		, OnlyOnce('Two_Cert_Res')
    		]->
    	 [
    	 	EV_Start_Auth( Auth_DIFF )
    		, Out(<'FirstTPM', pke1, PC_PD1, Q_PD1, sk_PD1>)
    		, Out(<'SecondTPM', pke2, PC_PD2, Q_PD2, sk_PD2>) 	
    	 ]	
    
    // The EV obtains a credential response either for TPM1 or TPM2 (diff property)
    // as well as charge data from the adversary (impersonating the CP)
    // The EV then uses the obtained credential to authenticate the charge data and sends the
    // authenticated data back to the adversary
    rule EV_Auth:
    	let
    		e=KDF_EK(~TPM_EK_Seed)
    		//pke1='g'^e1
    		pke=pk(e)
    		E_PD=<'EK_public_data',pke>
    		PC_PD=<'PC_public_data',pk(pc)>
    		Q=multp(~f, 'P1')
    		Q_PD=<'DAA_public_data', Q>
    
    		i_x=h(<i_x_t, pke>)
    
    		m=<pke,pk(pc), Q_PD, res_n, 'join_Issuer_1'>
    		signed_m=H_SHA256(<m, pk(cps), n>) 
    		m_in=aenc(<sig_over_m,m>,pk(cps))
    
    		pkX=PkX(x,'P2')
    		pkY=PkY(y,'P2')
    		EMSP_Cert=<I,pkX,pkY>
    
    		A=multp(r,'P1')
    		B=multp(y,A)
    		C=plus(multp(x,A),multp(multp(multp(r,x),y),Q))
    		D=multp(multp(r,y),Q)	
    
    		curlyK_2_hat=senc(curlyK_2,k_e)
    		C_hat=senc(<A,B,C,D,u,j>,curlyK_2)
    		sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', obfuscationValue, sk_emaid>
    		sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e)
    		sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc>
    		m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'>
    
    		Auth_DIFF=<req, m_in, n, m_out, sig_m, <pke, PC_PD, Q_PD>>
    
    		//Host_Randomise_Credentials
    		/*
    		bsn='bottom'
    		R=multp(~l,A)
    		S=multp(~l,B)
    		T=multp(~l,C)
    		W=multp(~l,D)
    		s_2_bar=bsn
    		y_2=bsn
    
    		//TPM2_Commit
    		E=E_S(~r_cv1,S)*/
    
    		//TPM_Create_Session_Key
    
    		pkCCsess=pk(~g)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		/*
    
    		Qk_PD=<'SessionKey_public_data', pkCCsess>
    
    Timm Lauser's avatar
    Timm Lauser committed
    		Qk_n=<'SHA256',H_SHA256(Qk_PD)>
    		Qk_SD=senc(~g,aes_key)
    
    		//Host_Load_Qk_For_Ceritfication
    		credData='CredentialData'
    		c=H_k_7(credData,R,S,T,W,E, sid)*/
    		m_buffer=<'00',i_x>
    
    		//TPM2_Load_And_Certify
    		/*N1=QName('SHA256',H_SHA256('root'))
    		N2=QName('SHA256',H_SHA256(E_PD))
    		N3=H_SHA256(<N1, N2>)
    		Qk_QualName=H_SHA256(<N3, Qk_n>)*/
    		/*
    		curlyA=<'certificationData', Qk_n>//, Qk_n, Qk_QualName>
    		credData='CredentialData'
    		small_c=H_k_7(credData,R,S,T,W,E, sid)
    		h1=H_k_2(small_c, H_6(curlyA))
    		n_C=Nonce(~rnd_n_C)
    		h2=H_n_2(n_C, h1)
    		small_s=plus(~r_cv1, multp(h2, ~f))*/
    
    		//TPM2_HMAC1
    
    		tM_id=MAC(m_buffer, sk_emaid)
    		M_id=h(tM_id)
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Receive_Certified_Q_k
    		//sigma_K=<Qk_PD, curlyA, bsn, R, S, T, W, h2, small_s, n_C>
    
    		//auth_m1=<EMSP_Cert, M_id,  sigma_K, 'TPM_Certificate_Of_Q_K'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//Host_Auth
    		m_buffer2=<'01',i_x>
    
    		//TPM2_HMAC2
    		M_auth=MAC(m_buffer2, sk_emaid)
    
    		//Host_Auth2
    
    		tM_auth=h(<M_auth, nonce_ix>)
    		//authH=h(<$CP, nonce, tM_auth>) 
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//TPM2_Sign_SessionKey
    		//sig_over_auth=sign(authH,~g)
    
    		//Host_Auth3
    
    		//auth_m2=<authH, sig_over_auth, ~i_x, tM_auth, 'AuthorizationReq'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		// CP_Verify
    
    		auth_m_emsp=<I, M_id, nonce_ix, tM_auth, pkCCsess, 'EMSP_Auth'>
    
    Timm Lauser's avatar
    Timm Lauser committed
    
    		//EV_DataSign
    
    		ev_h=h(<'EV_h',M_auth,pkCCsess>)
    		dataTBS=h(<'charge_data', dataID, ev_h>)
    
    Timm Lauser's avatar
    Timm Lauser committed
    		dataSig=sign(dataTBS,~g)
    
    		//CP_DataRec
    		data_m=<I, 'charge_data', dataID, dataSig>
    	in
         [ 
    	 	EV_Start_Auth(Auth_DIFF)
    		, !PkCPS(CPS_I,pk(cps))
    		//, Fr(~l)
    		//, Fr(~r_cv1)
    		, Fr(~g) 
    		, In(i_x_t) //In & onlyonce
    		, In(<$CP, sid, <nonce, nonce_ix>, <'charge_data', dataID>>)
    		, Fr(~rnd_n_C)
    				
    	] 
    	 --[ 
    		Eq(verify(sig_m,H_SHA256(m_out),pk(cps)), true)
    		, Eq(verify(sig_over_m,signed_m,pk(pc)), true)
    		, EV_Auth()
    		, OnlyOnce('EV_Auth')
    		]->
    	 [
    		Out(<auth_m_emsp, data_m>)
    	 ]	
    
    
    
    lemma diff_correctness: exists-trace
    
    Timm Lauser's avatar
    Timm Lauser committed
    "	Ex #t1 #t3 #t4 #t5 #t6 #t7 .
    		Issuer_Init() @ t1
    		& Generate_TPM_Keys() @ t3
    		& CreateRes('req1') @ t4
    		& CreateRes('req2') @ t5
    		& Two_Cert_Res() @ t6
    		& EV_Auth() @ t7
    		& #t1<#t3
    		& #t3<#t4
    		& #t4<#t5
    		& #t5<#t6
    		& #t6<#t7
    		
    		//we had no key reveal
    		//& not( Ex RevealEvent ENTITY #k1 . KeyReveal(RevealEvent, ENTITY)@k1) 
    		
    		//restrict rules to only run once in a trace
    		& (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j)
    "
    
    end