Newer
Older
import pandas as pd
from numpy import save
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from dynamodb_helpers import get_tidy_data_path
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
df = pd.read_parquet(get_tidy_data_path() / 'current_race.parquet')
numerical_columns = [
'number',
'position',
'points',
'grid',
'laps',
'Time.millis',
'FastestLap.rank',
'FastestLap.lap',
'FastestLap.AverageSpeed.speed'
]
categorical_columns = [
'status',
'Driver.code',
'Driver.nationality',
'Constructor.constructorId',
]
df = df[
numerical_columns + categorical_columns
]
full_pipeline = ColumnTransformer(
[
('num', StandardScaler(), numerical_columns),
('cat', OneHotEncoder(), categorical_columns)
]
)
current_prepared_array = full_pipeline.fit_transform(df)
save(
get_tidy_data_path() / 'current_race_prepared.npy',
current_prepared_array
)