Newer
Older
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
Paschalis Tsilias
committed
package rand_test
Paschalis Tsilias
committed
. "math/rand"
Paschalis Tsilias
committed
var rn, kn, wn, fn = GetNormalDistributionParameters()
var re, ke, we, fe = GetExponentialDistributionParameters()
type statsResults struct {
mean float64
stddev float64
closeEnough float64
maxError float64
}
func nearEqual(a, b, closeEnough, maxError float64) bool {
if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
return true
return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
}
var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
// checkSimilarDistribution returns success if the mean and stddev of the
// two statsResults are similar.
func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error {
if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError)
if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError)
}
func getStatsResults(samples []float64) *statsResults {
var sum, squaresum float64
for _, s := range samples {
sum += s
squaresum += s * s
res.mean = sum / float64(len(samples))
res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
}
func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
actual := getStatsResults(samples)
err := actual.checkSimilarDistribution(expected)
}
}
func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
chunk := len(samples) / nslices
for i := 0; i < nslices; i++ {
low := i * chunk
var high int
high = len(samples) - 1
high = (i + 1) * chunk
checkSampleDistribution(t, samples[low:high], expected)
}
}
//
// Normal distribution tests
//
func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.NormFloat64()*stddev + mean
}
func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
samples := generateNormalSamples(nsamples, mean, stddev, seed)
errorScale := max(1.0, stddev) // Error scales with stddev
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardNormalValues(t *testing.T) {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, 0, 1, seed)
}
}
func TestNonStandardNormalValues(t *testing.T) {
sdmax := 1000.0
mmax := 1000.0
if testing.Short() {
sdmax = 5
mmax = 5
}
for sd := 0.5; sd < sdmax; sd *= 2 {
for m := 0.5; m < mmax; m *= 2 {
for _, seed := range testSeeds {
testNormalDistribution(t, numTestSamples, m, sd, seed)
}
}
}
}
//
// Exponential distribution tests
//
func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
r := New(NewSource(seed))
samples := make([]float64, nsamples)
for i := range samples {
samples[i] = r.ExpFloat64() / rate
}
func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
mean := 1 / rate
stddev := mean
samples := generateExponentialSamples(nsamples, rate, seed)
errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
// Make sure that each half of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 2, expected)
// Make sure that each 7th of the set matches the expected distribution.
checkSampleSliceDistributions(t, samples, 7, expected)
}
// Actual tests
func TestStandardExponentialValues(t *testing.T) {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, 1, seed)
}
}
func TestNonStandardExponentialValues(t *testing.T) {
for rate := 0.05; rate < 10; rate *= 2 {
for _, seed := range testSeeds {
testExponentialDistribution(t, numTestSamples, rate, seed)
}
}
}
//
// Table generation tests
//
func initNorm() (testKn []uint32, testWn, testFn []float32) {
tn = dn
vn float64 = 9.91256303526217e-3
testKn = make([]uint32, 128)
testWn = make([]float32, 128)
testFn = make([]float32, 128)
q := vn / math.Exp(-0.5*dn*dn)
testKn[0] = uint32((dn / q) * m1)
testKn[1] = 0
testWn[0] = float32(q / m1)
testWn[127] = float32(dn / m1)
testFn[0] = 1.0
testFn[127] = float32(math.Exp(-0.5 * dn * dn))
for i := 126; i >= 1; i-- {
dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
testKn[i+1] = uint32((dn / tn) * m1)
tn = dn
testFn[i] = float32(math.Exp(-0.5 * dn * dn))
testWn[i] = float32(dn / m1)
}
func initExp() (testKe []uint32, testWe, testFe []float32) {
te = de
ve float64 = 3.9496598225815571993e-3
testKe = make([]uint32, 256)
testWe = make([]float32, 256)
testFe = make([]float32, 256)
q := ve / math.Exp(-de)
testKe[0] = uint32((de / q) * m2)
testKe[1] = 0
testWe[0] = float32(q / m2)
testWe[255] = float32(de / m2)
testFe[0] = 1.0
testFe[255] = float32(math.Exp(-de))
for i := 254; i >= 1; i-- {
de = -math.Log(ve/de + math.Exp(-de))
testKe[i+1] = uint32((de / te) * m2)
te = de
testFe[i] = float32(math.Exp(-de))
testWe[i] = float32(de / m2)
}
// compareUint32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareUint32Slices(s1, s2 []uint32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
for i := range s1 {
if s1[i] != s2[i] {
return i
}
// compareFloat32Slices returns the first index where the two slices
// disagree, or <0 if the lengths are the same and all elements
// are identical.
func compareFloat32Slices(s1, s2 []float32) int {
if len(s1) != len(s2) {
if len(s1) > len(s2) {
return len(s2) + 1
}
for i := range s1 {
if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
return i
}
func TestNormTables(t *testing.T) {
testKn, testWn, testFn := initNorm()
if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
}
}
func TestExpTables(t *testing.T) {
testKe, testWe, testFe := initExp()
if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
func hasSlowFloatingPoint() bool {
switch runtime.GOARCH {
case "arm":
return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat")
case "mips", "mipsle", "mips64", "mips64le":
// Be conservative and assume that all mips boards
// have emulated floating point.
// TODO: detect what it actually has.
return true
}
return false
}
func TestFloat32(t *testing.T) {
// For issue 6721, the problem came after 7533753 calls, so check 10e6.
num := int(10e6)
// But do the full amount only on builders (not locally).
// But ARM5 floating point emulation is slow (Issue 10749), so
// do less for that builder:
if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
num /= 100 // 1.72 seconds instead of 172 seconds
}
r := New(NewSource(1))
for ct := 0; ct < num; ct++ {
f := r.Float32()
if f >= 1 {
t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
}
}
}
func testReadUniformity(t *testing.T, n int, seed int64) {
r := New(NewSource(seed))
buf := make([]byte, n)
nRead, err := r.Read(buf)
if err != nil {
t.Errorf("Read err %v", err)
}
if nRead != n {
t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
}
// Expect a uniform distribution of byte values, which lie in [0, 255].
var (
mean = 255.0 / 2
stddev = 256.0 / math.Sqrt(12.0)
errorScale = stddev / math.Sqrt(float64(n))
)
expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
// Cast bytes as floats to use the common distribution-validity checks.
samples := make([]float64, n)
for i, val := range buf {
samples[i] = float64(val)
}
// Make sure that the entire set matches the expected distribution.
checkSampleDistribution(t, samples, expected)
}
func TestReadUniformity(t *testing.T) {
testBufferSizes := []int{
2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
}
for _, seed := range testSeeds {
for _, n := range testBufferSizes {
testReadUniformity(t, n, seed)
}
}
}
func TestReadEmpty(t *testing.T) {
r := New(NewSource(1))
buf := make([]byte, 0)
n, err := r.Read(buf)
if err != nil {
t.Errorf("Read err into empty buffer; %v", err)
}
if n != 0 {
t.Errorf("Read into empty buffer returned unexpected n of %d", n)
}
}
func TestReadByOneByte(t *testing.T) {
r := New(NewSource(1))
b1 := make([]byte, 100)
_, err := io.ReadFull(iotest.OneByteReader(r), b1)
if err != nil {
t.Errorf("read by one byte: %v", err)
}
r = New(NewSource(1))
b2 := make([]byte, 100)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
}
}
func TestReadSeedReset(t *testing.T) {
r := New(NewSource(42))
b1 := make([]byte, 128)
_, err := r.Read(b1)
if err != nil {
t.Errorf("read: %v", err)
}
r.Seed(42)
b2 := make([]byte, 128)
_, err = r.Read(b2)
if err != nil {
t.Errorf("read: %v", err)
}
if !bytes.Equal(b1, b2) {
t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
}
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
func TestShuffleSmall(t *testing.T) {
// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
r := New(NewSource(1))
for n := 0; n <= 1; n++ {
r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
}
}
// encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
// See https://en.wikipedia.org/wiki/Lehmer_code.
// encodePerm modifies the input slice.
func encodePerm(s []int) int {
// Convert to Lehmer code.
for i, x := range s {
r := s[i+1:]
for j, y := range r {
if y > x {
r[j]--
}
}
}
// Convert to int in [0, n!).
m := 0
fact := 1
for i := len(s) - 1; i >= 0; i-- {
m += s[i] * fact
fact *= len(s) - i
}
return m
}
// TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
func TestUniformFactorial(t *testing.T) {
r := New(NewSource(testSeeds[0]))
top := 6
if testing.Short() {
}
for n := 3; n <= top; n++ {
t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
// Calculate n!.
nfact := 1
for i := 2; i <= n; i++ {
nfact *= i
}
// Test a few different ways to generate a uniform distribution.
p := make([]int, n) // re-usable slice for Shuffle generator
tests := [...]struct {
name string
fn func() int
}{
{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
Paschalis Tsilias
committed
{name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
{name: "Shuffle", fn: func() int {
// Generate permutation using Shuffle.
for i := range p {
p[i] = i
}
r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
return encodePerm(p)
}},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
// Gather chi-squared values and check that they follow
// the expected normal distribution given n!-1 degrees of freedom.
// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
nsamples := 10 * nfact
if nsamples < 200 {
nsamples = 200
}
samples := make([]float64, nsamples)
for i := range samples {
// Generate some uniformly distributed values and count their occurrences.
const iters = 1000
counts := make([]int, nfact)
for i := 0; i < iters; i++ {
counts[test.fn()]++
}
// Calculate chi-squared and add to samples.
want := iters / float64(nfact)
var χ2 float64
for _, have := range counts {
err := float64(have) - want
χ2 += err * err
}
χ2 /= want
samples[i] = χ2
}
// Check that our samples approximate the appropriate normal distribution.
dof := float64(nfact - 1)
expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
errorScale := max(1.0, expected.stddev)
expected.closeEnough = 0.10 * errorScale
expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
checkSampleDistribution(t, samples, expected)
})
}
})
}
}
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
func TestSeedNop(t *testing.T) {
// If the global Seed takes effect, then resetting it to a certain value
// should provide predictable output to functions using it.
t.Run("randseednop=0", func(t *testing.T) {
t.Setenv("GODEBUG", "randseednop=0")
Seed(1)
before := Int63()
Seed(1)
after := Int63()
if before != after {
t.Fatal("global Seed should take effect")
}
})
// If calls to the global Seed are no-op then functions using it should
// provide different output, even if it was reset to the same value.
t.Run("randseednop=1", func(t *testing.T) {
t.Setenv("GODEBUG", "randseednop=1")
Seed(1)
before := Int63()
Seed(1)
after := Int63()
if before == after {
t.Fatal("global Seed should be a no-op")
}
})
t.Run("GODEBUG unset", func(t *testing.T) {
Seed(1)
before := Int63()
Seed(1)
after := Int63()
if before == after {
t.Fatal("global Seed should default to being a no-op")
}
})
}
// Benchmarks
func BenchmarkInt63Threadsafe(b *testing.B) {
for n := b.N; n > 0; n-- {
Int63()
}
}
func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
Int63()
}
})
}
func BenchmarkInt63Unthreadsafe(b *testing.B) {
for n := b.N; n > 0; n-- {
r.Int63()
}
}
func BenchmarkIntn1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Intn(1000)
}
}
func BenchmarkInt63n1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Int63n(1000)
}
}
func BenchmarkInt31n1000(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Int31n(1000)
}
}
func BenchmarkFloat32(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Float32()
}
}
func BenchmarkFloat64(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Float64()
}
}
func BenchmarkPerm3(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Perm(3)
}
}
func BenchmarkPerm30(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Perm(30)
}
}
func BenchmarkPerm30ViaShuffle(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
p := make([]int, 30)
for i := range p {
p[i] = i
}
r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
}
}
// BenchmarkShuffleOverhead uses a minimal swap function
// to measure just the shuffling overhead.
func BenchmarkShuffleOverhead(b *testing.B) {
r := New(NewSource(1))
for n := b.N; n > 0; n-- {
r.Shuffle(52, func(i, j int) {
if i < 0 || i >= 52 || j < 0 || j >= 52 {
b.Fatalf("bad swap(%d, %d)", i, j)
}
})
}
}
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
func BenchmarkRead3(b *testing.B) {
r := New(NewSource(1))
buf := make([]byte, 3)
b.ResetTimer()
for n := b.N; n > 0; n-- {
r.Read(buf)
}
}
func BenchmarkRead64(b *testing.B) {
r := New(NewSource(1))
buf := make([]byte, 64)
b.ResetTimer()
for n := b.N; n > 0; n-- {
r.Read(buf)
}
}
func BenchmarkRead1000(b *testing.B) {
r := New(NewSource(1))
buf := make([]byte, 1000)
b.ResetTimer()
for n := b.N; n > 0; n-- {
r.Read(buf)
}
}
func BenchmarkConcurrent(b *testing.B) {
const goroutines = 4
var wg sync.WaitGroup
wg.Add(goroutines)
for i := 0; i < goroutines; i++ {
go func() {
defer wg.Done()
for n := b.N; n > 0; n-- {
Int63()
}
}()
}
wg.Wait()
}