Skip to content
Snippets Groups Projects
rand_test.go 17.8 KiB
Newer Older
  • Learn to ignore specific revisions
  • // Copyright 2009 The Go Authors. All rights reserved.
    // Use of this source code is governed by a BSD-style
    // license that can be found in the LICENSE file.
    
    
    	"internal/testenv"
    
    Russ Cox's avatar
    Russ Cox committed
    	"math"
    
    	"testing/iotest"
    
    	numTestSamples = 10000
    
    var rn, kn, wn, fn = GetNormalDistributionParameters()
    var re, ke, we, fe = GetExponentialDistributionParameters()
    
    
    type statsResults struct {
    
    	mean        float64
    	stddev      float64
    	closeEnough float64
    	maxError    float64
    
    }
    
    func nearEqual(a, b, closeEnough, maxError float64) bool {
    
    	absDiff := math.Abs(a - b)
    
    	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
    
    	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
    
    }
    
    var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
    
    // checkSimilarDistribution returns success if the mean and stddev of the
    // two statsResults are similar.
    
    func (sr *statsResults) checkSimilarDistribution(expected *statsResults) error {
    	if !nearEqual(sr.mean, expected.mean, expected.closeEnough, expected.maxError) {
    		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", sr.mean, expected.mean, expected.closeEnough, expected.maxError)
    
    		return errors.New(s)
    
    	if !nearEqual(sr.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
    		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", sr.stddev, expected.stddev, expected.closeEnough, expected.maxError)
    
    		return errors.New(s)
    
    }
    
    func getStatsResults(samples []float64) *statsResults {
    
    	res := new(statsResults)
    
    	var sum, squaresum float64
    	for _, s := range samples {
    		sum += s
    		squaresum += s * s
    
    	res.mean = sum / float64(len(samples))
    
    	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
    
    }
    
    func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
    
    	actual := getStatsResults(samples)
    	err := actual.checkSimilarDistribution(expected)
    
    	}
    }
    
    func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
    
    	chunk := len(samples) / nslices
    
    	for i := 0; i < nslices; i++ {
    
    		low := i * chunk
    		var high int
    
    		if i == nslices-1 {
    
    			high = len(samples) - 1
    
    		checkSampleDistribution(t, samples[low:high], expected)
    
    	}
    }
    
    //
    // Normal distribution tests
    //
    
    func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
    
    	r := New(NewSource(seed))
    	samples := make([]float64, nsamples)
    
    	for i := range samples {
    
    		samples[i] = r.NormFloat64()*stddev + mean
    
    }
    
    func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
    	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
    
    
    	samples := generateNormalSamples(nsamples, mean, stddev, seed)
    	errorScale := max(1.0, stddev) // Error scales with stddev
    	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
    
    
    	// Make sure that the entire set matches the expected distribution.
    
    	checkSampleDistribution(t, samples, expected)
    
    
    	// Make sure that each half of the set matches the expected distribution.
    
    	checkSampleSliceDistributions(t, samples, 2, expected)
    
    
    	// Make sure that each 7th of the set matches the expected distribution.
    
    	checkSampleSliceDistributions(t, samples, 7, expected)
    
    }
    
    // Actual tests
    
    func TestStandardNormalValues(t *testing.T) {
    	for _, seed := range testSeeds {
    
    		testNormalDistribution(t, numTestSamples, 0, 1, seed)
    
    	}
    }
    
    func TestNonStandardNormalValues(t *testing.T) {
    
    	sdmax := 1000.0
    	mmax := 1000.0
    	if testing.Short() {
    		sdmax = 5
    		mmax = 5
    	}
    	for sd := 0.5; sd < sdmax; sd *= 2 {
    		for m := 0.5; m < mmax; m *= 2 {
    
    			for _, seed := range testSeeds {
    
    				testNormalDistribution(t, numTestSamples, m, sd, seed)
    
    				if testing.Short() {
    					break
    				}
    
    			}
    		}
    	}
    }
    
    //
    // Exponential distribution tests
    //
    
    func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
    
    	r := New(NewSource(seed))
    	samples := make([]float64, nsamples)
    
    	for i := range samples {
    
    		samples[i] = r.ExpFloat64() / rate
    
    }
    
    func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
    	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
    
    
    	mean := 1 / rate
    	stddev := mean
    
    	samples := generateExponentialSamples(nsamples, rate, seed)
    	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
    	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
    
    
    	// Make sure that the entire set matches the expected distribution.
    
    	checkSampleDistribution(t, samples, expected)
    
    
    	// Make sure that each half of the set matches the expected distribution.
    
    	checkSampleSliceDistributions(t, samples, 2, expected)
    
    
    	// Make sure that each 7th of the set matches the expected distribution.
    
    	checkSampleSliceDistributions(t, samples, 7, expected)
    
    }
    
    // Actual tests
    
    func TestStandardExponentialValues(t *testing.T) {
    	for _, seed := range testSeeds {
    
    		testExponentialDistribution(t, numTestSamples, 1, seed)
    
    	}
    }
    
    func TestNonStandardExponentialValues(t *testing.T) {
    
    	for rate := 0.05; rate < 10; rate *= 2 {
    
    		for _, seed := range testSeeds {
    
    			testExponentialDistribution(t, numTestSamples, rate, seed)
    
    			if testing.Short() {
    				break
    			}
    
    		}
    	}
    }
    
    //
    // Table generation tests
    //
    
    func initNorm() (testKn []uint32, testWn, testFn []float32) {
    
    	const m1 = 1 << 31
    
    		vn float64 = 9.91256303526217e-3
    
    	testKn = make([]uint32, 128)
    	testWn = make([]float32, 128)
    	testFn = make([]float32, 128)
    
    	q := vn / math.Exp(-0.5*dn*dn)
    	testKn[0] = uint32((dn / q) * m1)
    	testKn[1] = 0
    	testWn[0] = float32(q / m1)
    	testWn[127] = float32(dn / m1)
    	testFn[0] = 1.0
    	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
    
    	for i := 126; i >= 1; i-- {
    
    		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
    		testKn[i+1] = uint32((dn / tn) * m1)
    		tn = dn
    		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
    		testWn[i] = float32(dn / m1)
    
    }
    
    func initExp() (testKe []uint32, testWe, testFe []float32) {
    
    	const m2 = 1 << 32
    
    		ve float64 = 3.9496598225815571993e-3
    
    	testKe = make([]uint32, 256)
    	testWe = make([]float32, 256)
    	testFe = make([]float32, 256)
    
    	q := ve / math.Exp(-de)
    	testKe[0] = uint32((de / q) * m2)
    	testKe[1] = 0
    	testWe[0] = float32(q / m2)
    	testWe[255] = float32(de / m2)
    	testFe[0] = 1.0
    	testFe[255] = float32(math.Exp(-de))
    
    	for i := 254; i >= 1; i-- {
    
    		de = -math.Log(ve/de + math.Exp(-de))
    		testKe[i+1] = uint32((de / te) * m2)
    		te = de
    		testFe[i] = float32(math.Exp(-de))
    		testWe[i] = float32(de / m2)
    
    }
    
    // compareUint32Slices returns the first index where the two slices
    // disagree, or <0 if the lengths are the same and all elements
    // are identical.
    func compareUint32Slices(s1, s2 []uint32) int {
    	if len(s1) != len(s2) {
    		if len(s1) > len(s2) {
    
    		return len(s1) + 1
    
    	}
    	for i := range s1 {
    		if s1[i] != s2[i] {
    
    }
    
    // compareFloat32Slices returns the first index where the two slices
    // disagree, or <0 if the lengths are the same and all elements
    // are identical.
    func compareFloat32Slices(s1, s2 []float32) int {
    	if len(s1) != len(s2) {
    		if len(s1) > len(s2) {
    
    		return len(s1) + 1
    
    	}
    	for i := range s1 {
    		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
    
    }
    
    func TestNormTables(t *testing.T) {
    
    	testKn, testWn, testFn := initNorm()
    
    	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
    
    	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
    
    	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
    
    	}
    }
    
    func TestExpTables(t *testing.T) {
    
    	testKe, testWe, testFe := initExp()
    
    	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
    
    	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
    
    	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
    
    Rob Pike's avatar
    Rob Pike committed
    		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
    
    func hasSlowFloatingPoint() bool {
    	switch runtime.GOARCH {
    	case "arm":
    
    		return os.Getenv("GOARM") == "5" || strings.HasSuffix(os.Getenv("GOARM"), ",softfloat")
    
    	case "mips", "mipsle", "mips64", "mips64le":
    		// Be conservative and assume that all mips boards
    		// have emulated floating point.
    		// TODO: detect what it actually has.
    		return true
    	}
    	return false
    }
    
    
    func TestFloat32(t *testing.T) {
    
    	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
    	num := int(10e6)
    
    	// But do the full amount only on builders (not locally).
    
    	// But ARM5 floating point emulation is slow (Issue 10749), so
    	// do less for that builder:
    
    	if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
    
    		num /= 100 // 1.72 seconds instead of 172 seconds
    	}
    
    
    	for ct := 0; ct < num; ct++ {
    
    		f := r.Float32()
    		if f >= 1 {
    			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
    		}
    	}
    }
    
    
    func testReadUniformity(t *testing.T, n int, seed int64) {
    	r := New(NewSource(seed))
    	buf := make([]byte, n)
    	nRead, err := r.Read(buf)
    	if err != nil {
    		t.Errorf("Read err %v", err)
    	}
    	if nRead != n {
    		t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
    	}
    
    	// Expect a uniform distribution of byte values, which lie in [0, 255].
    	var (
    		mean       = 255.0 / 2
    
    		stddev     = 256.0 / math.Sqrt(12.0)
    
    		errorScale = stddev / math.Sqrt(float64(n))
    	)
    
    	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
    
    	// Cast bytes as floats to use the common distribution-validity checks.
    	samples := make([]float64, n)
    	for i, val := range buf {
    		samples[i] = float64(val)
    	}
    	// Make sure that the entire set matches the expected distribution.
    	checkSampleDistribution(t, samples, expected)
    }
    
    
    func TestReadUniformity(t *testing.T) {
    
    	testBufferSizes := []int{
    		2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
    	}
    	for _, seed := range testSeeds {
    		for _, n := range testBufferSizes {
    			testReadUniformity(t, n, seed)
    		}
    	}
    }
    
    func TestReadEmpty(t *testing.T) {
    	r := New(NewSource(1))
    	buf := make([]byte, 0)
    	n, err := r.Read(buf)
    	if err != nil {
    		t.Errorf("Read err into empty buffer; %v", err)
    	}
    	if n != 0 {
    		t.Errorf("Read into empty buffer returned unexpected n of %d", n)
    	}
    
    }
    
    func TestReadByOneByte(t *testing.T) {
    	r := New(NewSource(1))
    	b1 := make([]byte, 100)
    	_, err := io.ReadFull(iotest.OneByteReader(r), b1)
    	if err != nil {
    		t.Errorf("read by one byte: %v", err)
    	}
    	r = New(NewSource(1))
    	b2 := make([]byte, 100)
    	_, err = r.Read(b2)
    	if err != nil {
    		t.Errorf("read: %v", err)
    	}
    	if !bytes.Equal(b1, b2) {
    		t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
    	}
    }
    
    func TestReadSeedReset(t *testing.T) {
    	r := New(NewSource(42))
    	b1 := make([]byte, 128)
    	_, err := r.Read(b1)
    	if err != nil {
    		t.Errorf("read: %v", err)
    	}
    	r.Seed(42)
    	b2 := make([]byte, 128)
    	_, err = r.Read(b2)
    	if err != nil {
    		t.Errorf("read: %v", err)
    	}
    	if !bytes.Equal(b1, b2) {
    		t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
    	}
    
    func TestShuffleSmall(t *testing.T) {
    	// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
    	r := New(NewSource(1))
    	for n := 0; n <= 1; n++ {
    		r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
    	}
    }
    
    // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
    // See https://en.wikipedia.org/wiki/Lehmer_code.
    // encodePerm modifies the input slice.
    func encodePerm(s []int) int {
    	// Convert to Lehmer code.
    	for i, x := range s {
    		r := s[i+1:]
    		for j, y := range r {
    			if y > x {
    				r[j]--
    			}
    		}
    	}
    	// Convert to int in [0, n!).
    	m := 0
    	fact := 1
    	for i := len(s) - 1; i >= 0; i-- {
    		m += s[i] * fact
    		fact *= len(s) - i
    	}
    	return m
    }
    
    // TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
    func TestUniformFactorial(t *testing.T) {
    	r := New(NewSource(testSeeds[0]))
    	top := 6
    	if testing.Short() {
    
    Russ Cox's avatar
    Russ Cox committed
    		top = 3
    
    	}
    	for n := 3; n <= top; n++ {
    		t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
    			// Calculate n!.
    			nfact := 1
    			for i := 2; i <= n; i++ {
    				nfact *= i
    			}
    
    			// Test a few different ways to generate a uniform distribution.
    			p := make([]int, n) // re-usable slice for Shuffle generator
    			tests := [...]struct {
    				name string
    				fn   func() int
    			}{
    				{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
    
    				{name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
    
    				{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
    				{name: "Shuffle", fn: func() int {
    					// Generate permutation using Shuffle.
    					for i := range p {
    						p[i] = i
    					}
    					r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
    					return encodePerm(p)
    				}},
    			}
    
    			for _, test := range tests {
    				t.Run(test.name, func(t *testing.T) {
    					// Gather chi-squared values and check that they follow
    					// the expected normal distribution given n!-1 degrees of freedom.
    					// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
    					// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
    					nsamples := 10 * nfact
    					if nsamples < 200 {
    						nsamples = 200
    					}
    					samples := make([]float64, nsamples)
    					for i := range samples {
    						// Generate some uniformly distributed values and count their occurrences.
    						const iters = 1000
    						counts := make([]int, nfact)
    						for i := 0; i < iters; i++ {
    							counts[test.fn()]++
    						}
    						// Calculate chi-squared and add to samples.
    						want := iters / float64(nfact)
    						var χ2 float64
    						for _, have := range counts {
    							err := float64(have) - want
    							χ2 += err * err
    						}
    						χ2 /= want
    						samples[i] = χ2
    					}
    
    					// Check that our samples approximate the appropriate normal distribution.
    					dof := float64(nfact - 1)
    					expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
    					errorScale := max(1.0, expected.stddev)
    					expected.closeEnough = 0.10 * errorScale
    					expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
    					checkSampleDistribution(t, samples, expected)
    				})
    			}
    		})
    	}
    }
    
    
    func TestSeedNop(t *testing.T) {
    	// If the global Seed takes effect, then resetting it to a certain value
    	// should provide predictable output to functions using it.
    	t.Run("randseednop=0", func(t *testing.T) {
    		t.Setenv("GODEBUG", "randseednop=0")
    		Seed(1)
    		before := Int63()
    		Seed(1)
    		after := Int63()
    		if before != after {
    			t.Fatal("global Seed should take effect")
    		}
    	})
    	// If calls to the global Seed are no-op then functions using it should
    	// provide different output, even if it was reset to the same value.
    	t.Run("randseednop=1", func(t *testing.T) {
    		t.Setenv("GODEBUG", "randseednop=1")
    		Seed(1)
    		before := Int63()
    		Seed(1)
    		after := Int63()
    		if before == after {
    			t.Fatal("global Seed should be a no-op")
    		}
    	})
    	t.Run("GODEBUG unset", func(t *testing.T) {
    		Seed(1)
    		before := Int63()
    		Seed(1)
    		after := Int63()
    		if before == after {
    			t.Fatal("global Seed should default to being a no-op")
    		}
    	})
    }
    
    
    // Benchmarks
    
    func BenchmarkInt63Threadsafe(b *testing.B) {
    	for n := b.N; n > 0; n-- {
    		Int63()
    	}
    }
    
    
    func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
    	b.RunParallel(func(pb *testing.PB) {
    		for pb.Next() {
    			Int63()
    		}
    	})
    }
    
    
    func BenchmarkInt63Unthreadsafe(b *testing.B) {
    
    	r := New(NewSource(1))
    
    	for n := b.N; n > 0; n-- {
    		r.Int63()
    	}
    }
    
    
    func BenchmarkIntn1000(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Intn(1000)
    	}
    }
    
    func BenchmarkInt63n1000(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Int63n(1000)
    	}
    }
    
    func BenchmarkInt31n1000(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Int31n(1000)
    	}
    }
    
    func BenchmarkFloat32(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Float32()
    	}
    }
    
    
    func BenchmarkFloat64(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Float64()
    	}
    }
    
    
    func BenchmarkPerm3(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Perm(3)
    	}
    }
    
    func BenchmarkPerm30(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Perm(30)
    	}
    }
    
    func BenchmarkPerm30ViaShuffle(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		p := make([]int, 30)
    		for i := range p {
    			p[i] = i
    		}
    		r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
    	}
    }
    
    // BenchmarkShuffleOverhead uses a minimal swap function
    // to measure just the shuffling overhead.
    func BenchmarkShuffleOverhead(b *testing.B) {
    	r := New(NewSource(1))
    	for n := b.N; n > 0; n-- {
    		r.Shuffle(52, func(i, j int) {
    			if i < 0 || i >= 52 || j < 0 || j >= 52 {
    				b.Fatalf("bad swap(%d, %d)", i, j)
    			}
    		})
    	}
    }
    
    
    func BenchmarkRead3(b *testing.B) {
    	r := New(NewSource(1))
    	buf := make([]byte, 3)
    	b.ResetTimer()
    	for n := b.N; n > 0; n-- {
    		r.Read(buf)
    	}
    }
    
    func BenchmarkRead64(b *testing.B) {
    	r := New(NewSource(1))
    	buf := make([]byte, 64)
    	b.ResetTimer()
    	for n := b.N; n > 0; n-- {
    		r.Read(buf)
    	}
    }
    
    func BenchmarkRead1000(b *testing.B) {
    	r := New(NewSource(1))
    	buf := make([]byte, 1000)
    	b.ResetTimer()
    	for n := b.N; n > 0; n-- {
    		r.Read(buf)
    	}
    }
    
    
    func BenchmarkConcurrent(b *testing.B) {
    	const goroutines = 4
    	var wg sync.WaitGroup
    	wg.Add(goroutines)
    	for i := 0; i < goroutines; i++ {
    		go func() {
    			defer wg.Done()
    			for n := b.N; n > 0; n-- {
    				Int63()
    			}
    		}()
    	}
    	wg.Wait()
    }