Newer
Older
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Annotate Ref in Prog with C types by parsing gcc debug output.
package main
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"encoding/binary"
"go/parser"
var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
var nameToC = map[string]string{
"schar": "signed char",
"uchar": "unsigned char",
"ushort": "unsigned short",
"uint": "unsigned int",
"ulong": "unsigned long",
"longlong": "long long",
"ulonglong": "unsigned long long",
"complexfloat": "float complex",
"complexdouble": "double complex",
}
// cname returns the C name to use for C.s.
// The expansions are listed in nameToC and also
// struct_foo becomes "struct foo", and similarly for
// union and enum.
func cname(s string) string {
if t, ok := nameToC[s]; ok {
return t
}
if strings.HasPrefix(s, "struct_") {
return "struct " + s[len("struct_"):]
}
if strings.HasPrefix(s, "union_") {
return "union " + s[len("union_"):]
}
if strings.HasPrefix(s, "enum_") {
return "enum " + s[len("enum_"):]
}
return s
}
// ParseFlags extracts #cgo CFLAGS and LDFLAGS options from the file
// preamble. Multiple occurrences are concatenated with a separating space,
// even across files.
func (p *Package) ParseFlags(f *File, srcfile string) {
linesIn := strings.Split(f.Preamble, "\n", -1)
linesOut := make([]string, 0, len(linesIn))
for _, line := range linesIn {
l := strings.TrimSpace(line)
if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(int(l[4])) {
linesOut = append(linesOut, line)
continue
}
l = strings.TrimSpace(l[4:])
fields := strings.Split(l, ":", 2)
if len(fields) != 2 {
fatalf("%s: bad #cgo line: %s", srcfile, line)
var k string
kf := strings.Fields(fields[0])
switch len(kf) {
case 1:
k = kf[0]
case 2:
k = kf[1]
switch kf[0] {
case runtime.GOOS:
case runtime.GOARCH:
case runtime.GOOS + "/" + runtime.GOARCH:
default:
continue NextLine
}
default:
fatalf("%s: bad #cgo option: %s", srcfile, fields[0])
args, err := splitQuoted(fields[1])
fatalf("%s: bad #cgo option %s: %s", srcfile, k, err)
for _, arg := range args {
if !safeName(arg) {
fatalf("%s: #cgo option %s is unsafe: %s", srcfile, k, arg)
}
}
switch k {
case "CFLAGS", "LDFLAGS":
p.addToFlag(k, args)
case "pkg-config":
cflags, ldflags, err := pkgConfig(args)
if err != nil {
fatalf("%s: bad #cgo option %s: %s", srcfile, k, err)
}
p.addToFlag("CFLAGS", cflags)
p.addToFlag("LDFLAGS", ldflags)
default:
fatalf("%s: unsupported #cgo option %s", srcfile, k)
}
}
f.Preamble = strings.Join(linesOut, "\n")
}
// addToFlag appends args to flag. All flags are later written out onto the
// _cgo_flags file for the build system to use.
func (p *Package) addToFlag(flag string, args []string) {
if oldv, ok := p.CgoFlags[flag]; ok {
p.CgoFlags[flag] = oldv + " " + strings.Join(args, " ")
} else {
p.CgoFlags[flag] = strings.Join(args, " ")
}
if flag == "CFLAGS" {
// We'll also need these when preprocessing for dwarf information.
p.GccOptions = append(p.GccOptions, args...)
}
}
// pkgConfig runs pkg-config and extracts --libs and --cflags information
// for packages.
func pkgConfig(packages []string) (cflags, ldflags []string, err os.Error) {
for _, name := range packages {
if len(name) == 0 || name[0] == '-' {
return nil, nil, os.NewError(fmt.Sprintf("invalid name: %q", name))
}
}
args := append([]string{"pkg-config", "--cflags"}, packages...)
stdout, stderr, ok := run(nil, args)
if !ok {
os.Stderr.Write(stderr)
return nil, nil, os.NewError("pkg-config failed")
}
cflags, err = splitQuoted(string(stdout))
if err != nil {
return
}
args = append([]string{"pkg-config", "--libs"}, packages...)
stdout, stderr, ok = run(nil, args)
if !ok {
os.Stderr.Write(stderr)
return nil, nil, os.NewError("pkg-config failed")
}
ldflags, err = splitQuoted(string(stdout))
return
}
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// splitQuoted splits the string s around each instance of one or more consecutive
// white space characters while taking into account quotes and escaping, and
// returns an array of substrings of s or an empty list if s contains only white space.
// Single quotes and double quotes are recognized to prevent splitting within the
// quoted region, and are removed from the resulting substrings. If a quote in s
// isn't closed err will be set and r will have the unclosed argument as the
// last element. The backslash is used for escaping.
//
// For example, the following string:
//
// `a b:"c d" 'e''f' "g\""`
//
// Would be parsed as:
//
// []string{"a", "b:c d", "ef", `g"`}
//
func splitQuoted(s string) (r []string, err os.Error) {
var args []string
arg := make([]int, len(s))
escaped := false
quoted := false
quote := 0
i := 0
for _, rune := range s {
switch {
case escaped:
escaped = false
case rune == '\\':
escaped = true
continue
case quote != 0:
if rune == quote {
quote = 0
continue
}
case rune == '"' || rune == '\'':
quoted = true
quote = rune
continue
case unicode.IsSpace(rune):
if quoted || i > 0 {
quoted = false
args = append(args, string(arg[:i]))
i = 0
}
continue
}
arg[i] = rune
i++
}
if quoted || i > 0 {
args = append(args, string(arg[:i]))
}
if quote != 0 {
err = os.ErrorString("unclosed quote")
} else if escaped {
err = os.ErrorString("unfinished escaping")
}
return args, err
}
var safeBytes = []byte("+-.,/0123456789=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz")
func safeName(s string) bool {
if s == "" {
return false
}
for i := 0; i < len(s); i++ {
if c := s[i]; c < 0x80 && bytes.IndexByte(safeBytes, c) < 0 {
return false
}
}
return true
}
// Translate rewrites f.AST, the original Go input, to remove
// references to the imported package C, replacing them with
// references to the equivalent Go types, functions, and variables.
func (p *Package) Translate(f *File) {
for _, cref := range f.Ref {
// Convert C.ulong to C.unsigned long, etc.
cref.Name.C = cname(cref.Name.Go)
}
p.loadDefines(f)
needType := p.guessKinds(f)
if len(needType) > 0 {
p.loadDWARF(f, needType)
}
p.rewriteRef(f)
}
// loadDefines coerces gcc into spitting out the #defines in use
// in the file f and saves relevant renamings in f.Name[name].Define.
func (p *Package) loadDefines(f *File) {
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
stdout := p.gccDefines(b.Bytes())
for _, line := range strings.Split(stdout, "\n", -1) {
if len(line) < 9 || line[0:7] != "#define" {
continue
}
line = strings.TrimSpace(line[8:])
var key, val string
spaceIndex := strings.Index(line, " ")
tabIndex := strings.Index(line, "\t")
if spaceIndex == -1 && tabIndex == -1 {
continue
} else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
key = line[0:spaceIndex]
val = strings.TrimSpace(line[spaceIndex:])
} else {
key = line[0:tabIndex]
val = strings.TrimSpace(line[tabIndex:])
}
if n := f.Name[key]; n != nil {
if *debugDefine {
fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
// guessKinds tricks gcc into revealing the kind of each
// name xxx for the references C.xxx in the Go input.
// The kind is either a constant, type, or variable.
func (p *Package) guessKinds(f *File) []*Name {
// Coerce gcc into telling us whether each name is
// a type, a value, or undeclared. We compile a function
// containing the line:
// name;
// If name is a type, gcc will print:
// cgo-test:2: warning: useless type name in empty declaration
// If name is a value, gcc will print
// If name is undeclared, gcc will print
// cgo-test:2: error: 'name' undeclared (first use in this function)
// A line number directive causes the line number to
// correspond to the index in the names array.
//
// The line also has an enum declaration:
// name; enum { _cgo_enum_1 = name };
// If name is not a constant, gcc will print:
// cgo-test:4: error: enumerator value for '_cgo_enum_4' is not an integer constant
// we assume lines without that error are constants.
// Make list of names that need sniffing, type lookup.
toSniff := make([]*Name, 0, len(f.Name))
needType := make([]*Name, 0, len(f.Name))
for _, n := range f.Name {
// If we've already found this name as a #define
// and we can translate it as a constant value, do so.
if n.Define != "" {
ok := false
if _, err := strconv.Atoi(n.Define); err == nil {
ok = true
} else if n.Define[0] == '"' || n.Define[0] == '\'' {
Robert Griesemer
committed
_, err := parser.ParseExpr(fset, "", n.Define)
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
if err == nil {
ok = true
}
}
if ok {
n.Kind = "const"
n.Const = n.Define
continue
}
if isName(n.Define) {
n.C = n.Define
}
}
// If this is a struct, union, or enum type name,
// record the kind but also that we need type information.
if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
n.Kind = "type"
i := len(needType)
needType = needType[0 : i+1]
needType[i] = n
continue
}
i := len(toSniff)
toSniff = toSniff[0 : i+1]
toSniff[i] = n
}
if len(toSniff) == 0 {
return needType
}
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
b.WriteString("void __cgo__f__(void) {\n")
b.WriteString("#line 0 \"cgo-test\"\n")
for i, n := range toSniff {
fmt.Fprintf(&b, "%s; enum { _cgo_enum_%d = %s }; /* cgo-test:%d */\n", n.C, i, n.C, i)
if stderr == "" {
fatalf("gcc produced no output\non input:\n%s", b.Bytes())
}
names := make([]*Name, len(toSniff))
copy(names, toSniff)
isConst := make([]bool, len(toSniff))
for i := range isConst {
isConst[i] = true // until proven otherwise
for _, line := range strings.Split(stderr, "\n", -1) {
if len(line) < 9 || line[0:9] != "cgo-test:" {
// the user will see any compiler errors when the code is compiled later.
continue
line = line[9:]
colon := strings.Index(line, ":")
continue
i, err := strconv.Atoi(line[0:colon])
continue
switch {
default:
continue
case strings.Contains(line, ": useless type name in empty declaration"):
what = "type"
case strings.Contains(line, ": statement with no effect"):
case strings.Contains(line, "undeclared"):
Robert Griesemer
committed
error(token.NoPos, "%s", strings.TrimSpace(line[colon+1:]))
case strings.Contains(line, "is not an integer constant"):
toSniff[i] = nil
n.Kind = what
j := len(needType)
needType = needType[0 : j+1]
needType[j] = n
for i, b := range isConst {
if b {
names[i].Kind = "const"
for _, n := range toSniff {
if n == nil {
continue
}
if n.Kind != "" {
continue
}
Robert Griesemer
committed
error(token.NoPos, "could not determine kind of name for C.%s", n.Go)
fatalf("unresolved names")
// loadDWARF parses the DWARF debug information generated
// by gcc to learn the details of the constants, variables, and types
// being referred to as C.xxx.
func (p *Package) loadDWARF(f *File, names []*Name) {
// Extract the types from the DWARF section of an object
// from a well-formed C program. Gcc only generates DWARF info
// for symbols in the object file, so it is not enough to print the
// preamble and hope the symbols we care about will be there.
// Instead, emit
// typeof(names[i]) *__cgo__i;
// for each entry in names and then dereference the type we
// learn for __cgo__i.
var b bytes.Buffer
b.WriteString(builtinProlog)
b.WriteString(f.Preamble)
for i, n := range names {
fmt.Fprintf(&b, "typeof(%s) *__cgo__%d;\n", n.C, i)
if n.Kind == "const" {
fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
}
// Apple's LLVM-based gcc does not include the enumeration
// names and values in its DWARF debug output. In case we're
// using such a gcc, create a data block initialized with the values.
// We can read them out of the object file.
fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n")
for _, n := range names {
if n.Kind == "const" {
fmt.Fprintf(&b, "\t%s,\n", n.C)
} else {
fmt.Fprintf(&b, "\t0,\n")
}
}
fmt.Fprintf(&b, "\t0\n")
fmt.Fprintf(&b, "};\n")
d, bo, debugData := p.gccDebug(b.Bytes())
enumVal := make([]int64, len(debugData)/8)
for i := range enumVal {
enumVal[i] = int64(bo.Uint64(debugData[i*8:]))
}
// Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
types := make([]dwarf.Type, len(names))
Moriyoshi Koizumi
committed
enums := make([]dwarf.Offset, len(names))
nameToIndex := make(map[*Name]int)
for i, n := range names {
nameToIndex[n] = i
}
fatalf("reading DWARF entry: %s", err)
}
if e == nil {
Moriyoshi Koizumi
committed
switch e.Tag {
case dwarf.TagEnumerationType:
offset := e.Offset
for {
e, err := r.Next()
if err != nil {
fatalf("reading DWARF entry: %s", err)
Moriyoshi Koizumi
committed
}
if e.Tag == 0 {
break
}
if e.Tag == dwarf.TagEnumerator {
entryName := e.Val(dwarf.AttrName).(string)
if strings.HasPrefix(entryName, "__cgo_enum__") {
n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):])
if 0 <= n && n < len(names) {
enums[n] = offset
}
Moriyoshi Koizumi
committed
}
}
}
case dwarf.TagVariable:
name, _ := e.Val(dwarf.AttrName).(string)
typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
if name == "" || typOff == 0 {
fatalf("malformed DWARF TagVariable entry")
Moriyoshi Koizumi
committed
}
if !strings.HasPrefix(name, "__cgo__") {
break
}
typ, err := d.Type(typOff)
if err != nil {
fatalf("loading DWARF type: %s", err)
Moriyoshi Koizumi
committed
}
t, ok := typ.(*dwarf.PtrType)
if !ok || t == nil {
fatalf("internal error: %s has non-pointer type", name)
Moriyoshi Koizumi
committed
}
i, err := strconv.Atoi(name[7:])
if err != nil {
fatalf("malformed __cgo__ name: %s", name)
Moriyoshi Koizumi
committed
}
if enums[i] != 0 {
t, err := d.Type(enums[i])
if err != nil {
fatalf("loading DWARF type: %s", err)
Moriyoshi Koizumi
committed
}
types[i] = t
} else {
types[i] = t.Type
}
}
if e.Tag != dwarf.TagCompileUnit {
r.SkipChildren()
var conv typeConv
conv.Init(p.PtrSize)
f, fok := types[i].(*dwarf.FuncType)
if n.Kind != "type" && fok {
n.Kind = "func"
n.FuncType = conv.FuncType(f)
n.Type = conv.Type(types[i])
if enums[i] != 0 && n.Type.EnumValues != nil {
n.Const = strconv.Itoa64(n.Type.EnumValues[k])
// Remove injected enum to ensure the value will deep-compare
// equally in future loads of the same constant.
n.Type.EnumValues[k] = 0, false
} else if n.Kind == "const" && i < len(enumVal) {
n.Const = strconv.Itoa64(enumVal[i])
// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
// Go equivalents, now that we have figured out the meaning of all
// the xxx.
func (p *Package) rewriteRef(f *File) {
// Assign mangled names.
for _, n := range f.Name {
if n.Kind == "not-type" {
n.Kind = "var"
}
if n.Mangle == "" {
n.Mangle = "_C" + n.Kind + "_" + n.Go
}
// Now that we have all the name types filled in,
// scan through the Refs to identify the ones that
// are trying to do a ,err call. Also check that
// functions are only used in calls.
for _, r := range f.Ref {
if r.Name.Kind == "const" && r.Name.Const == "" {
error(r.Pos(), "unable to find value of constant C.%s", r.Name.Go)
}
var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
switch r.Context {
case "call", "call2":
if r.Name.Kind != "func" {
if r.Name.Kind == "type" {
r.Context = "type"
expr = r.Name.Type.Go
break
}
error(r.Pos(), "call of non-function C.%s", r.Name.Go)
break
}
if r.Context == "call2" {
if r.Name.FuncType.Result == nil {
error(r.Pos(), "assignment count mismatch: 2 = 0")
}
// Invent new Name for the two-result function.
n := f.Name["2"+r.Name.Go]
if n == nil {
n = new(Name)
*n = *r.Name
n.AddError = true
n.Mangle = "_C2func_" + n.Go
f.Name["2"+r.Name.Go] = n
}
expr = ast.NewIdent(n.Mangle)
r.Name = n
break
}
case "expr":
if r.Name.Kind == "func" {
error(r.Pos(), "must call C.%s", r.Name.Go)
}
if r.Name.Kind == "type" {
// Okay - might be new(T)
expr = r.Name.Type.Go
}
if r.Name.Kind == "var" {
expr = &ast.StarExpr{X: expr}
}
case "type":
if r.Name.Kind != "type" {
error(r.Pos(), "expression C.%s used as type", r.Name.Go)
}
default:
if r.Name.Kind == "func" {
error(r.Pos(), "must call C.%s", r.Name.Go)
}
}
*r.Expr = expr
// gccName returns the name of the compiler to run. Use $GCC if set in
// the environment, otherwise just "gcc".
func (p *Package) gccName() (ret string) {
ret = "gcc"
}
return
}
// gccMachine returns the gcc -m flag to use, either "-m32" or "-m64".
func (p *Package) gccMachine() []string {
switch runtime.GOARCH {
case "amd64":
return []string{"-m64"}
case "386":
return []string{"-m32"}
}
return nil
// gccCmd returns the gcc command line to use for compiling
// the input.
func (p *Package) gccCmd() []string {
p.gccName(),
"-Wall", // many warnings
"-Werror", // warnings are errors
"-gdwarf-2", // generate DWARF v2 debugging symbols
Devon H. O'Dell
committed
"-fno-eliminate-unused-debug-types", // gets rid of e.g. untyped enum otherwise
"-c", // do not link
"-xc", // input language is C
c = append(c, "-") //read input from standard input
return c
}
// gccDebug runs gcc -gdwarf-2 over the C program stdin and
// returns the corresponding DWARF data and, if present, debug data block.
func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) {
if f, err := macho.Open(gccTmp); err == nil {
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
}
var data []byte
if f.Symtab != nil {
for i := range f.Symtab.Syms {
s := &f.Symtab.Syms[i]
// Mach-O still uses a leading _ to denote non-assembly symbols.
if s.Name == "_"+"__cgodebug_data" {
// Found it. Now find data section.
if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
sect := f.Sections[i]
if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
if sdat, err := sect.Data(); err == nil {
data = sdat[s.Value-sect.Addr:]
}
}
}
}
return d, f.ByteOrder, data
// Can skip debug data block in ELF and PE for now.
// The DWARF information is complete.
if f, err := elf.Open(gccTmp); err == nil {
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
}
return d, f.ByteOrder, nil
if f, err := pe.Open(gccTmp); err == nil {
d, err := f.DWARF()
if err != nil {
fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
}
return d, binary.LittleEndian, nil
}
fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp)
panic("not reached")
// gccDefines runs gcc -E -dM -xc - over the C program stdin
// and returns the corresponding standard output, which is the
// #defines that gcc encountered while processing the input
// and its included files.
func (p *Package) gccDefines(stdin []byte) string {
base := []string{p.gccName(), "-E", "-dM", "-xc"}
base = append(base, p.gccMachine()...)
stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
return stdout
}
// gccErrors runs gcc over the C program stdin and returns
// the errors that gcc prints. That is, this function expects
// gcc to fail.
func (p *Package) gccErrors(stdin []byte) string {
// TODO(rsc): require failure
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, _ := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
// runGcc runs the gcc command line args with stdin on standard input.
// If the command exits with a non-zero exit status, runGcc prints
// details about what was run and exits.
// Otherwise runGcc returns the data written to standard output and standard error.
// Note that for some of the uses we expect useful data back
// on standard error, but for those uses gcc must still exit 0.
func runGcc(stdin []byte, args []string) (string, string) {
if *debugGcc {
fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
os.Stderr.Write(stdin)
fmt.Fprint(os.Stderr, "EOF\n")
}
stdout, stderr, ok := run(stdin, args)
if *debugGcc {
os.Stderr.Write(stdout)
os.Stderr.Write(stderr)
}
if !ok {
// A typeConv is a translator from dwarf types to Go types
// with equivalent memory layout.
type typeConv struct {
// Cache of already-translated or in-progress types.
m map[dwarf.Type]*Type
typedef map[string]ast.Expr
byte ast.Expr // denotes padding
int8, int16, int32, int64 ast.Expr
uint8, uint16, uint32, uint64, uintptr ast.Expr
float32, float64 ast.Expr
void ast.Expr
unsafePointer ast.Expr
string ast.Expr
c.ptrSize = ptrSize
c.m = make(map[dwarf.Type]*Type)
c.byte = c.Ident("byte")
c.int8 = c.Ident("int8")
c.int16 = c.Ident("int16")
c.int32 = c.Ident("int32")
c.int64 = c.Ident("int64")
c.uint8 = c.Ident("uint8")
c.uint16 = c.Ident("uint16")
c.uint32 = c.Ident("uint32")
c.uint64 = c.Ident("uint64")
c.uintptr = c.Ident("uintptr")
c.float32 = c.Ident("float32")
c.float64 = c.Ident("float64")
c.complex64 = c.Ident("complex64")
c.complex128 = c.Ident("complex128")
c.unsafePointer = c.Ident("unsafe.Pointer")
c.void = c.Ident("void")
c.string = c.Ident("string")
}
// base strips away qualifiers and typedefs to get the underlying type
func base(dt dwarf.Type) dwarf.Type {
for {
if d, ok := dt.(*dwarf.QualType); ok {
dt = d.Type
continue
dt = d.Type
continue
}
// Map from dwarf text names to aliases we use in package "C".
"long int": "long",
"long unsigned int": "ulong",
"unsigned int": "uint",
"short unsigned int": "ushort",
"short int": "short",
"long long int": "longlong",
"signed char": "schar",
"float complex": "complexfloat",
"double complex": "complexdouble",
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// String returns the current type representation. Format arguments
// are assembled within this method so that any changes in mutable
// values are taken into account.
func (tr *TypeRepr) String() string {
if len(tr.Repr) == 0 {
return ""
}
if len(tr.FormatArgs) == 0 {
return tr.Repr
}
return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
}
// Empty returns true if the result of String would be "".
func (tr *TypeRepr) Empty() bool {
return len(tr.Repr) == 0
}
// Set modifies the type representation.
// If fargs are provided, repr is used as a format for fmt.Sprintf.
// Otherwise, repr is used unprocessed as the type representation.
func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
tr.Repr = repr
tr.FormatArgs = fargs
}
// Type returns a *Type with the same memory layout as
// dtype when used as the type of a variable or a struct field.
func (c *typeConv) Type(dtype dwarf.Type) *Type {
if t, ok := c.m[dtype]; ok {
if t.Go == nil {
fatalf("type conversion loop at %s", dtype)
t := new(Type)
t.Size = dtype.Size()
t.Align = -1
t.C = &TypeRepr{Repr: dtype.Common().Name}
// Unsized types are [0]byte
t.Size = 0
t.Go = c.Opaque(0)
}
fatalf("unexpected type: %s", dtype)
fatalf("unexpected: %d-byte address type - %s", t.Size, dtype)
t.Go = c.uintptr
t.Align = t.Size
case *dwarf.ArrayType:
if dt.StrideBitSize > 0 {
// Cannot represent bit-sized elements in Go.
t.Go = c.Opaque(t.Size)
break
}
t.Go = gt // publish before recursive call
sub := c.Type(dt.Type)
t.Align = sub.Align
gt.Elt = sub.Go
t.C.Set("typeof(%s[%d])", sub.C, dt.Count)
case *dwarf.BoolType:
t.Go = c.bool
t.Align = c.ptrSize
fatalf("unexpected: %d-byte char type - %s", t.Size, dtype)
t.Go = c.int8
t.Align = 1
if t.Align = t.Size; t.Align >= c.ptrSize {
t.Align = c.ptrSize
}