Newer
Older
// UNREVIEWED
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package noder
import (
"bytes"
"fmt"
"go/constant"
"strings"
"cmd/compile/internal/base"
"cmd/compile/internal/deadcode"
"cmd/compile/internal/dwarfgen"
"cmd/compile/internal/inline"
"cmd/compile/internal/ir"
"cmd/compile/internal/reflectdata"
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
)
// TODO(mdempsky): Suppress duplicate type/const errors that can arise
// during typecheck due to naive type substitution (e.g., see #42758).
// I anticipate these will be handled as a consequence of adding
// dictionaries support, so it's probably not important to focus on
// this until after that's done.
type pkgReader struct {
pkgDecoder
posBases []*src.PosBase
pkgs []*types.Pkg
typs []*types.Type
// offset for rewriting the given index into the output,
// but bitwise inverted so we can detect if we're missing the entry or not.
newindex []int
}
func newPkgReader(pr pkgDecoder) *pkgReader {
return &pkgReader{
pkgDecoder: pr,
posBases: make([]*src.PosBase, pr.numElems(relocPosBase)),
pkgs: make([]*types.Pkg, pr.numElems(relocPkg)),
typs: make([]*types.Type, pr.numElems(relocType)),
newindex: make([]int, pr.totalElems()),
}
}
type pkgReaderIndex struct {
pr *pkgReader
idx int
dict *readerDict
}
func (pri pkgReaderIndex) asReader(k reloc, marker syncMarker) *reader {
r := pri.pr.newReader(k, pri.idx, marker)
r.dict = pri.dict
return r
}
func (pr *pkgReader) newReader(k reloc, idx int, marker syncMarker) *reader {
return &reader{
decoder: pr.newDecoder(k, idx, marker),
p: pr,
}
}
type reader struct {
decoder
p *pkgReader
dict *readerDict
// TODO(mdempsky): The state below is all specific to reading
// function bodies. It probably makes sense to split it out
// separately so that it doesn't take up space in every reader
// instance.
curfn *ir.Func
locals []*ir.Name
closureVars []*ir.Name
funarghack bool
// scopeVars is a stack tracking the number of variables declared in
// the current function at the moment each open scope was opened.
scopeVars []int
marker dwarfgen.ScopeMarker
lastCloseScopePos src.XPos
// === details for handling inline body expansion ===
// If we're reading in a function body because of inlining, this is
// the call that we're inlining for.
inlCaller *ir.Func
inlCall *ir.CallExpr
inlFunc *ir.Func
inlTreeIndex int
inlPosBases map[*src.PosBase]*src.PosBase
delayResults bool
// Label to return to.
retlabel *types.Sym
inlvars, retvars ir.Nodes
}
type readerDict struct {
// targs holds the implicit and explicit type arguments in use for
// reading the current object. For example:
//
// func F[T any]() {
// type X[U any] struct { t T; u U }
// var _ X[string]
// }
//
// var _ = F[int]
//
// While instantiating F[int], we need to in turn instantiate
// X[string]. [int] and [string] are explicit type arguments for F
// and X, respectively; but [int] is also the implicit type
// arguments for X.
//
// (As an analogy to function literals, explicits are the function
// literal's formal parameters, while implicits are variables
// captured by the function literal.)
targs []*types.Type
// implicits counts how many of types within targs are implicit type
// arguments; the rest are explicit.
implicits int
Matthew Dempsky
committed
derived []derivedInfo // reloc index of the derived type's descriptor
derivedTypes []*types.Type // slice of previously computed derived types
funcs []objInfo
funcsObj []ir.Node
}
func setType(n ir.Node, typ *types.Type) {
n.SetType(typ)
n.SetTypecheck(1)
if name, ok := n.(*ir.Name); ok {
name.SetWalkdef(1)
name.Ntype = ir.TypeNode(name.Type())
}
}
func setValue(name *ir.Name, val constant.Value) {
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
name.SetVal(val)
name.Defn = nil
}
// @@@ Positions
func (r *reader) pos() src.XPos {
return base.Ctxt.PosTable.XPos(r.pos0())
}
func (r *reader) pos0() src.Pos {
r.sync(syncPos)
if !r.bool() {
return src.NoPos
}
posBase := r.posBase()
line := r.uint()
col := r.uint()
return src.MakePos(posBase, line, col)
}
func (r *reader) posBase() *src.PosBase {
return r.inlPosBase(r.p.posBaseIdx(r.reloc(relocPosBase)))
}
func (pr *pkgReader) posBaseIdx(idx int) *src.PosBase {
if b := pr.posBases[idx]; b != nil {
return b
}
r := pr.newReader(relocPosBase, idx, syncPosBase)
var b *src.PosBase
absFilename := r.string()
filename := absFilename
// For build artifact stability, the export data format only
// contains the "absolute" filename as returned by objabi.AbsFile.
// However, some tests (e.g., test/run.go's asmcheck tests) expect
// to see the full, original filename printed out. Re-expanding
// "$GOROOT" to buildcfg.GOROOT is a close-enough approximation to
// satisfy this.
//
// TODO(mdempsky): De-duplicate this logic with similar logic in
// cmd/link/internal/ld's expandGoroot. However, this will probably
// require being more consistent about when we use native vs UNIX
// file paths.
const dollarGOROOT = "$GOROOT"
if strings.HasPrefix(filename, dollarGOROOT) {
filename = buildcfg.GOROOT + filename[len(dollarGOROOT):]
}
if r.bool() {
b = src.NewFileBase(filename, absFilename)
} else {
pos := r.pos0()
line := r.uint()
col := r.uint()
b = src.NewLinePragmaBase(pos, filename, absFilename, line, col)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
}
pr.posBases[idx] = b
return b
}
func (r *reader) inlPosBase(oldBase *src.PosBase) *src.PosBase {
if r.inlCall == nil {
return oldBase
}
if newBase, ok := r.inlPosBases[oldBase]; ok {
return newBase
}
newBase := src.NewInliningBase(oldBase, r.inlTreeIndex)
r.inlPosBases[oldBase] = newBase
return newBase
}
func (r *reader) updatePos(xpos src.XPos) src.XPos {
pos := base.Ctxt.PosTable.Pos(xpos)
pos.SetBase(r.inlPosBase(pos.Base()))
return base.Ctxt.PosTable.XPos(pos)
}
func (r *reader) origPos(xpos src.XPos) src.XPos {
if r.inlCall == nil {
return xpos
}
pos := base.Ctxt.PosTable.Pos(xpos)
for old, new := range r.inlPosBases {
if pos.Base() == new {
pos.SetBase(old)
return base.Ctxt.PosTable.XPos(pos)
}
}
base.FatalfAt(xpos, "pos base missing from inlPosBases")
panic("unreachable")
}
// @@@ Packages
func (r *reader) pkg() *types.Pkg {
r.sync(syncPkg)
return r.p.pkgIdx(r.reloc(relocPkg))
}
func (pr *pkgReader) pkgIdx(idx int) *types.Pkg {
if pkg := pr.pkgs[idx]; pkg != nil {
return pkg
}
pkg := pr.newReader(relocPkg, idx, syncPkgDef).doPkg()
pr.pkgs[idx] = pkg
return pkg
}
func (r *reader) doPkg() *types.Pkg {
path := r.string()
if path == "builtin" {
return types.BuiltinPkg
}
if path == "" {
path = r.p.pkgPath
}
name := r.string()
height := r.len()
pkg := types.NewPkg(path, "")
if pkg.Name == "" {
pkg.Name = name
} else {
assert(pkg.Name == name)
}
if pkg.Height == 0 {
pkg.Height = height
} else {
assert(pkg.Height == height)
}
return pkg
}
// @@@ Types
func (r *reader) typ() *types.Type {
return r.typWrapped(true)
}
// typWrapped is like typ, but allows suppressing generation of
// unnecessary wrappers as a compile-time optimization.
func (r *reader) typWrapped(wrapped bool) *types.Type {
return r.p.typIdx(r.typInfo(), r.dict, wrapped)
Matthew Dempsky
committed
}
func (r *reader) typInfo() typeInfo {
r.sync(syncType)
if r.bool() {
Matthew Dempsky
committed
return typeInfo{idx: r.len(), derived: true}
}
Matthew Dempsky
committed
return typeInfo{idx: r.reloc(relocType), derived: false}
func (pr *pkgReader) typIdx(info typeInfo, dict *readerDict, wrapped bool) *types.Type {
Matthew Dempsky
committed
idx := info.idx
var where **types.Type
Matthew Dempsky
committed
if info.derived {
where = &dict.derivedTypes[idx]
idx = dict.derived[idx].idx
} else {
where = &pr.typs[idx]
}
if typ := *where; typ != nil {
return typ
}
r := pr.newReader(relocType, idx, syncTypeIdx)
r.dict = dict
typ := r.doTyp()
assert(typ != nil)
Cuong Manh Le
committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// For recursive type declarations involving interfaces and aliases,
// above r.doTyp() call may have already set pr.typs[idx], so just
// double check and return the type.
//
// Example:
//
// type F = func(I)
//
// type I interface {
// m(F)
// }
//
// The writer writes data types in following index order:
//
// 0: func(I)
// 1: I
// 2: interface{m(func(I))}
//
// The reader resolves it in following index order:
//
// 0 -> 1 -> 2 -> 0 -> 1
//
// and can divide in logically 2 steps:
//
// - 0 -> 1 : first time the reader reach type I,
// it creates new named type with symbol I.
//
// - 2 -> 0 -> 1: the reader ends up reaching symbol I again,
// now the symbol I was setup in above step, so
// the reader just return the named type.
//
// Now, the functions called return, the pr.typs looks like below:
//
// - 0 -> 1 -> 2 -> 0 : [<T> I <T>]
// - 0 -> 1 -> 2 : [func(I) I <T>]
// - 0 -> 1 : [func(I) I interface { "".m(func("".I)) }]
//
// The idx 1, corresponding with type I was resolved successfully
// after r.doTyp() call.
if prev := *where; prev != nil {
return prev
if wrapped {
// Only cache if we're adding wrappers, so that other callers that
// find a cached type know it was wrapped.
*where = typ
r.needWrapper(typ)
}
if !typ.IsUntyped() {
types.CheckSize(typ)
}
return typ
}
func (r *reader) doTyp() *types.Type {
switch tag := codeType(r.code(syncType)); tag {
default:
panic(fmt.Sprintf("unexpected type: %v", tag))
case typeBasic:
return *basics[r.len()]
case typeNamed:
obj := r.obj()
assert(obj.Op() == ir.OTYPE)
return obj.Type()
case typeTypeParam:
return r.dict.targs[r.len()]
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
case typeArray:
len := int64(r.uint64())
return types.NewArray(r.typ(), len)
case typeChan:
dir := dirs[r.len()]
return types.NewChan(r.typ(), dir)
case typeMap:
return types.NewMap(r.typ(), r.typ())
case typePointer:
return types.NewPtr(r.typ())
case typeSignature:
return r.signature(types.LocalPkg, nil)
case typeSlice:
return types.NewSlice(r.typ())
case typeStruct:
return r.structType()
case typeInterface:
return r.interfaceType()
}
}
func (r *reader) interfaceType() *types.Type {
tpkg := types.LocalPkg // TODO(mdempsky): Remove after iexport is gone.
nmethods, nembeddeds := r.len(), r.len()
fields := make([]*types.Field, nmethods+nembeddeds)
methods, embeddeds := fields[:nmethods], fields[nmethods:]
for i := range methods {
pos := r.pos()
pkg, sym := r.selector()
tpkg = pkg
mtyp := r.signature(pkg, types.FakeRecv())
methods[i] = types.NewField(pos, sym, mtyp)
}
for i := range embeddeds {
embeddeds[i] = types.NewField(src.NoXPos, nil, r.typ())
}
if len(fields) == 0 {
return types.Types[types.TINTER] // empty interface
}
return types.NewInterface(tpkg, fields, false)
}
func (r *reader) structType() *types.Type {
tpkg := types.LocalPkg // TODO(mdempsky): Remove after iexport is gone.
fields := make([]*types.Field, r.len())
for i := range fields {
pos := r.pos()
pkg, sym := r.selector()
tpkg = pkg
ftyp := r.typ()
tag := r.string()
embedded := r.bool()
f := types.NewField(pos, sym, ftyp)
f.Note = tag
if embedded {
f.Embedded = 1
}
fields[i] = f
}
return types.NewStruct(tpkg, fields)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
}
func (r *reader) signature(tpkg *types.Pkg, recv *types.Field) *types.Type {
r.sync(syncSignature)
params := r.params(&tpkg)
results := r.params(&tpkg)
if r.bool() { // variadic
params[len(params)-1].SetIsDDD(true)
}
return types.NewSignature(tpkg, recv, nil, params, results)
}
func (r *reader) params(tpkg **types.Pkg) []*types.Field {
r.sync(syncParams)
fields := make([]*types.Field, r.len())
for i := range fields {
*tpkg, fields[i] = r.param()
}
return fields
}
func (r *reader) param() (*types.Pkg, *types.Field) {
r.sync(syncParam)
pos := r.pos()
pkg, sym := r.localIdent()
typ := r.typ()
return pkg, types.NewField(pos, sym, typ)
}
// @@@ Objects
var objReader = map[*types.Sym]pkgReaderIndex{}
func (r *reader) obj() ir.Node {
r.sync(syncObject)
Matthew Dempsky
committed
if r.bool() {
idx := r.len()
obj := r.dict.funcsObj[idx]
if obj == nil {
fn := r.dict.funcs[idx]
targs := make([]*types.Type, len(fn.explicits))
for i, targ := range fn.explicits {
targs[i] = r.p.typIdx(targ, r.dict, true)
Matthew Dempsky
committed
}
obj = r.p.objIdx(fn.idx, nil, targs)
assert(r.dict.funcsObj[idx] == nil)
r.dict.funcsObj[idx] = obj
}
return obj
}
idx := r.reloc(relocObj)
explicits := make([]*types.Type, r.len())
for i := range explicits {
explicits[i] = r.typ()
}
var implicits []*types.Type
if r.dict != nil {
implicits = r.dict.targs
}
return r.p.objIdx(idx, implicits, explicits)
}
func (pr *pkgReader) objIdx(idx int, implicits, explicits []*types.Type) ir.Node {
rname := pr.newReader(relocName, idx, syncObject1)
_, sym := rname.qualifiedIdent()
tag := codeObj(rname.code(syncCodeObj))
if tag == objStub {
assert(!sym.IsBlank())
switch sym.Pkg {
case types.BuiltinPkg, types.UnsafePkg:
return sym.Def.(ir.Node)
}
if pri, ok := objReader[sym]; ok {
return pri.pr.objIdx(pri.idx, nil, explicits)
}
if haveLegacyImports {
assert(len(explicits) == 0)
return typecheck.Resolve(ir.NewIdent(src.NoXPos, sym))
}
base.Fatalf("unresolved stub: %v", sym)
}
dict := pr.objDictIdx(sym, idx, implicits, explicits)
r := pr.newReader(relocObj, idx, syncObject1)
rext := pr.newReader(relocObjExt, idx, syncObject1)
r.dict = dict
rext.dict = dict
sym = r.mangle(sym)
if !sym.IsBlank() && sym.Def != nil {
return sym.Def.(*ir.Name)
}
do := func(op ir.Op, hasTParams bool) *ir.Name {
pos := r.pos()
if hasTParams {
r.typeParamNames()
}
name := ir.NewDeclNameAt(pos, op, sym)
name.Class = ir.PEXTERN // may be overridden later
if !sym.IsBlank() {
if sym.Def != nil {
base.FatalfAt(name.Pos(), "already have a definition for %v", name)
}
assert(sym.Def == nil)
sym.Def = name
}
return name
}
switch tag {
default:
panic("unexpected object")
case objAlias:
name := do(ir.OTYPE, false)
setType(name, r.typ())
name.SetAlias(true)
return name
case objConst:
name := do(ir.OLITERAL, false)
typ := r.typ()
val := FixValue(typ, r.value())
setType(name, typ)
setValue(name, val)
return name
case objFunc:
if sym.Name == "init" {
sym = renameinit()
}
name := do(ir.ONAME, true)
setType(name, r.signature(sym.Pkg, nil))
name.Func = ir.NewFunc(r.pos())
name.Func.Nname = name
rext.funcExt(name)
return name
case objType:
name := do(ir.OTYPE, true)
typ := types.NewNamed(name)
setType(name, typ)
// Important: We need to do this before SetUnderlying.
rext.typeExt(name)
// We need to defer CheckSize until we've called SetUnderlying to
// handle recursive types.
types.DeferCheckSize()
typ.SetUnderlying(r.typWrapped(false))
types.ResumeCheckSize()
methods := make([]*types.Field, r.len())
for i := range methods {
methods[i] = r.method(rext)
}
if len(methods) != 0 {
typ.Methods().Set(methods)
}
r.needWrapper(typ)
return name
case objVar:
name := do(ir.ONAME, false)
setType(name, r.typ())
rext.varExt(name)
return name
}
}
func (r *reader) mangle(sym *types.Sym) *types.Sym {
Cuong Manh Le
committed
if !r.hasTypeParams() {
return sym
}
var buf bytes.Buffer
buf.WriteString(sym.Name)
buf.WriteByte('[')
for i, targ := range r.dict.targs {
if i > 0 {
if i == r.dict.implicits {
buf.WriteByte(';')
} else {
buf.WriteByte(',')
}
}
buf.WriteString(targ.LinkString())
}
buf.WriteByte(']')
return sym.Pkg.Lookup(buf.String())
}
func (pr *pkgReader) objDictIdx(sym *types.Sym, idx int, implicits, explicits []*types.Type) *readerDict {
r := pr.newReader(relocObjDict, idx, syncObject1)
var dict readerDict
nimplicits := r.len()
nexplicits := r.len()
if nimplicits > len(implicits) || nexplicits != len(explicits) {
base.Fatalf("%v has %v+%v params, but instantiated with %v+%v args", sym, nimplicits, nexplicits, len(implicits), len(explicits))
dict.targs = append(implicits[:nimplicits:nimplicits], explicits...)
dict.implicits = nimplicits
// For stenciling, we can just skip over the type parameters.
for range dict.targs[dict.implicits:] {
// Skip past bounds without actually evaluating them.
r.sync(syncType)
if r.bool() {
r.len()
} else {
r.reloc(relocType)
}
dict.derived = make([]derivedInfo, r.len())
dict.derivedTypes = make([]*types.Type, len(dict.derived))
for i := range dict.derived {
dict.derived[i] = derivedInfo{r.reloc(relocType), r.bool()}
}
dict.funcs = make([]objInfo, r.len())
dict.funcsObj = make([]ir.Node, len(dict.funcs))
for i := range dict.funcs {
objIdx := r.reloc(relocObj)
targs := make([]typeInfo, r.len())
for j := range targs {
targs[j] = r.typInfo()
}
dict.funcs[i] = objInfo{idx: objIdx, explicits: targs}
}
return &dict
}
func (r *reader) typeParamNames() {
r.sync(syncTypeParamNames)
for range r.dict.targs[r.dict.implicits:] {
r.pos()
r.localIdent()
}
}
func (r *reader) method(rext *reader) *types.Field {
r.sync(syncMethod)
pos := r.pos()
pkg, sym := r.selector()
r.typeParamNames()
_, recv := r.param()
typ := r.signature(pkg, recv)
fnsym := sym
fnsym = ir.MethodSym(recv.Type, fnsym)
name := ir.NewNameAt(pos, fnsym)
setType(name, typ)
name.Func = ir.NewFunc(r.pos())
name.Func.Nname = name
rext.funcExt(name)
meth := types.NewField(name.Func.Pos(), sym, typ)
meth.Nname = name
meth.SetNointerface(name.Func.Pragma&ir.Nointerface != 0)
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
return meth
}
func (r *reader) qualifiedIdent() (pkg *types.Pkg, sym *types.Sym) {
r.sync(syncSym)
pkg = r.pkg()
if name := r.string(); name != "" {
sym = pkg.Lookup(name)
}
return
}
func (r *reader) localIdent() (pkg *types.Pkg, sym *types.Sym) {
r.sync(syncLocalIdent)
pkg = r.pkg()
if name := r.string(); name != "" {
sym = pkg.Lookup(name)
}
return
}
func (r *reader) selector() (origPkg *types.Pkg, sym *types.Sym) {
r.sync(syncSelector)
origPkg = r.pkg()
name := r.string()
pkg := origPkg
if types.IsExported(name) {
pkg = types.LocalPkg
}
sym = pkg.Lookup(name)
return
}
Cuong Manh Le
committed
func (r *reader) hasTypeParams() bool {
return r.dict.hasTypeParams()
}
func (dict *readerDict) hasTypeParams() bool {
return dict != nil && len(dict.targs) != 0
Cuong Manh Le
committed
}
// @@@ Compiler extensions
func (r *reader) funcExt(name *ir.Name) {
r.sync(syncFuncExt)
name.Class = 0 // so MarkFunc doesn't complain
ir.MarkFunc(name)
fn := name.Func
// XXX: Workaround because linker doesn't know how to copy Pos.
if !fn.Pos().IsKnown() {
fn.SetPos(name.Pos())
}
// Normally, we only compile local functions, which saves redundant compilation work.
// n.Defn is not nil for local functions, and is nil for imported function. But for
// generic functions, we might have an instantiation that no other package has seen before.
// So we need to be conservative and compile it again.
//
// That's why name.Defn is set here, so ir.VisitFuncsBottomUp can analyze function.
// TODO(mdempsky,cuonglm): find a cleaner way to handle this.
Cuong Manh Le
committed
if name.Sym().Pkg == types.LocalPkg || r.hasTypeParams() {
name.Defn = fn
}
fn.Pragma = r.pragmaFlag()
r.linkname(name)
Matthew Dempsky
committed
typecheck.Func(fn)
if r.bool() {
fn.ABI = obj.ABI(r.uint64())
// Escape analysis.
for _, fs := range &types.RecvsParams {
for _, f := range fs(name.Type()).FieldSlice() {
f.Note = r.string()
}
}
if r.bool() {
fn.Inl = &ir.Inline{
Cost: int32(r.len()),
CanDelayResults: r.bool(),
}
r.addBody(name.Func)
r.addBody(name.Func)
}
r.sync(syncEOF)
}
func (r *reader) typeExt(name *ir.Name) {
r.sync(syncTypeExt)
typ := name.Type()
Cuong Manh Le
committed
if r.hasTypeParams() {
// Set "RParams" (really type arguments here, not parameters) so
// this type is treated as "fully instantiated". This ensures the
// type descriptor is written out as DUPOK and method wrappers are
// generated even for imported types.
var targs []*types.Type
targs = append(targs, r.dict.targs...)
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
typ.SetRParams(targs)
}
name.SetPragma(r.pragmaFlag())
if name.Pragma()&ir.NotInHeap != 0 {
typ.SetNotInHeap(true)
}
typecheck.SetBaseTypeIndex(typ, r.int64(), r.int64())
}
func (r *reader) varExt(name *ir.Name) {
r.sync(syncVarExt)
r.linkname(name)
}
func (r *reader) linkname(name *ir.Name) {
assert(name.Op() == ir.ONAME)
r.sync(syncLinkname)
if idx := r.int64(); idx >= 0 {
lsym := name.Linksym()
lsym.SymIdx = int32(idx)
lsym.Set(obj.AttrIndexed, true)
} else {
name.Sym().Linkname = r.string()
}
}
func (r *reader) pragmaFlag() ir.PragmaFlag {
r.sync(syncPragma)
return ir.PragmaFlag(r.int())
}
// @@@ Function bodies
// bodyReader tracks where the serialized IR for a function's body can
// be found.
var bodyReader = map[*ir.Func]pkgReaderIndex{}
// todoBodies holds the list of function bodies that still need to be
// constructed.
var todoBodies []*ir.Func
// todoBodiesDone signals that we constructed all function in todoBodies.
// This is necessary to prevent reader.addBody adds thing to todoBodies
// when nested inlining happens.
var todoBodiesDone = false
func (r *reader) addBody(fn *ir.Func) {
pri := pkgReaderIndex{r.p, r.reloc(relocBody), r.dict}
bodyReader[fn] = pri
if fn.Nname.Defn == nil {
// Don't read in function body for imported functions.
// See comment in funcExt.
return
}
if r.curfn == nil && !todoBodiesDone {
todoBodies = append(todoBodies, fn)
return
}
pri.funcBody(fn)
}
func (pri pkgReaderIndex) funcBody(fn *ir.Func) {
r := pri.asReader(relocBody, syncFuncBody)
r.funcBody(fn)
}
func (r *reader) funcBody(fn *ir.Func) {
r.curfn = fn
r.closureVars = fn.ClosureVars
ir.WithFunc(fn, func() {
r.funcargs(fn)
if !r.bool() {
return
}
body := r.stmts()
if body == nil {
body = []ir.Node{typecheck.Stmt(ir.NewBlockStmt(src.NoXPos, nil))}
}
fn.Body = body
fn.Endlineno = r.pos()
})
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
r.marker.WriteTo(fn)
}
func (r *reader) funcargs(fn *ir.Func) {
sig := fn.Nname.Type()
if recv := sig.Recv(); recv != nil {
r.funcarg(recv, recv.Sym, ir.PPARAM)
}
for _, param := range sig.Params().FieldSlice() {
r.funcarg(param, param.Sym, ir.PPARAM)
}
for i, param := range sig.Results().FieldSlice() {
sym := types.OrigSym(param.Sym)
if sym == nil || sym.IsBlank() {
prefix := "~r"
if r.inlCall != nil {
prefix = "~R"
} else if sym != nil {
prefix = "~b"
}
sym = typecheck.LookupNum(prefix, i)