Newer
Older
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bytes implements functions for the manipulation of byte slices.
// It is analogous to the facilities of the [strings] package.
// Equal reports whether a and b
// are the same length and contain the same bytes.
// A nil argument is equivalent to an empty slice.
func Equal(a, b []byte) bool {
// Neither cmd/compile nor gccgo allocates for these string conversions.
return string(a) == string(b)
// Compare returns an integer comparing two byte slices lexicographically.
// The result will be 0 if a == b, -1 if a < b, and +1 if a > b.
// A nil argument is equivalent to an empty slice.
func Compare(a, b []byte) int {
return bytealg.Compare(a, b)
}
// explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes),
// up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes.
David Symonds
committed
func explode(s []byte, n int) [][]byte {
n = len(s)
David Symonds
committed
}
a := make([][]byte, n)
var size int
na := 0
David Symonds
committed
if na+1 >= n {
a[na] = s
na++
break
David Symonds
committed
}
_, size = utf8.DecodeRune(s)
a[na] = s[0:size:size]
// Count counts the number of non-overlapping instances of sep in s.
// If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s.
func Count(s, sep []byte) int {
return utf8.RuneCount(s) + 1
if len(sep) == 1 {
return bytealg.Count(s, sep[0])
}
for {
i := Index(s, sep)
if i == -1 {
return n
// Contains reports whether subslice is within b.
func Contains(b, subslice []byte) bool {
// ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b.
func ContainsAny(b []byte, chars string) bool {
return IndexAny(b, chars) >= 0
}
// ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b.
func ContainsRune(b []byte, r rune) bool {
return IndexRune(b, r) >= 0
}
// ContainsFunc reports whether any of the UTF-8-encoded code points r within b satisfy f(r).
func ContainsFunc(b []byte, f func(rune) bool) bool {
return IndexFunc(b, f) >= 0
}
// IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b.
func IndexByte(b []byte, c byte) int {
return bytealg.IndexByte(b, c)
}
for i, b := range s {
if b == c {
return i
}
}
// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
func LastIndex(s, sep []byte) int {
switch {
case n == 0:
return len(s)
return bytealg.LastIndexByte(s, sep[0])
case n == len(s):
if Equal(s, sep) {
return 0
}
return -1
case n > len(s):
return -1
// Rabin-Karp search from the end of the string
hashss, pow := bytealg.HashStrRev(sep)
last := len(s) - n
var h uint32
for i := len(s) - 1; i >= last; i-- {
h = h*bytealg.PrimeRK + uint32(s[i])
}
if h == hashss && Equal(s[last:], sep) {
return last
}
for i := last - 1; i >= 0; i-- {
h *= bytealg.PrimeRK
h += uint32(s[i])
h -= pow * uint32(s[i+n])
if h == hashss && Equal(s[i:i+n], sep) {
return i
// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
func LastIndexByte(s []byte, c byte) int {
return bytealg.LastIndexByte(s, c)
// IndexRune interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index of the first occurrence in s of the given rune.
// It returns -1 if rune is not present in s.
// If r is utf8.RuneError, it returns the first instance of any
// invalid UTF-8 byte sequence.
switch {
case 0 <= r && r < utf8.RuneSelf:
case r == utf8.RuneError:
for i := 0; i < len(s); {
r1, n := utf8.DecodeRune(s[i:])
if r1 == utf8.RuneError {
return i
}
i += n
}
return -1
case !utf8.ValidRune(r):
return -1
default:
var b [utf8.UTFMax]byte
n := utf8.EncodeRune(b[:], r)
return Index(s, b[:n])
// IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points.
// It returns the byte index of the first occurrence in s of any of the Unicode
// code points in chars. It returns -1 if chars is empty or if there is no code
// point in common.
func IndexAny(s []byte, chars string) int {
if chars == "" {
// Avoid scanning all of s.
return -1
}
if len(s) == 1 {
r := rune(s[0])
if r >= utf8.RuneSelf {
// search utf8.RuneError.
for _, r = range chars {
if r == utf8.RuneError {
return 0
}
}
return -1
}
if bytealg.IndexByteString(chars, s[0]) >= 0 {
return 0
}
return -1
}
if len(chars) == 1 {
r := rune(chars[0])
if r >= utf8.RuneSelf {
r = utf8.RuneError
}
return IndexRune(s, r)
}
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i, c := range s {
if as.contains(c) {
return i
return -1
}
var width int
for i := 0; i < len(s); i += width {
r := rune(s[i])
if r < utf8.RuneSelf {
if bytealg.IndexByteString(chars, s[i]) >= 0 {
return i
}
width = 1
r, width = utf8.DecodeRune(s[i:])
if r != utf8.RuneError {
// r is 2 to 4 bytes
if len(chars) == width {
if chars == string(r) {
continue
}
// Use bytealg.IndexString for performance if available.
if bytealg.MaxLen >= width {
if bytealg.IndexString(chars, string(r)) >= 0 {
return i
}
continue
for _, ch := range chars {
if r == ch {
return i
}
// LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code
// points. It returns the byte index of the last occurrence in s of any of
// the Unicode code points in chars. It returns -1 if chars is empty or if
// there is no code point in common.
func LastIndexAny(s []byte, chars string) int {
if chars == "" {
// Avoid scanning all of s.
return -1
}
if len(s) > 8 {
if as, isASCII := makeASCIISet(chars); isASCII {
for i := len(s) - 1; i >= 0; i-- {
if as.contains(s[i]) {
return i
return -1
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
if len(s) == 1 {
r := rune(s[0])
if r >= utf8.RuneSelf {
for _, r = range chars {
if r == utf8.RuneError {
return 0
}
}
return -1
}
if bytealg.IndexByteString(chars, s[0]) >= 0 {
return 0
}
return -1
}
if len(chars) == 1 {
cr := rune(chars[0])
if cr >= utf8.RuneSelf {
cr = utf8.RuneError
}
for i := len(s); i > 0; {
r, size := utf8.DecodeLastRune(s[:i])
i -= size
if r == cr {
return i
}
}
return -1
}
for i := len(s); i > 0; {
r := rune(s[i-1])
if r < utf8.RuneSelf {
if bytealg.IndexByteString(chars, s[i-1]) >= 0 {
return i - 1
}
i--
continue
}
r, size := utf8.DecodeLastRune(s[:i])
i -= size
if r != utf8.RuneError {
// r is 2 to 4 bytes
if len(chars) == size {
if chars == string(r) {
continue
}
// Use bytealg.IndexString for performance if available.
if bytealg.MaxLen >= size {
if bytealg.IndexString(chars, string(r)) >= 0 {
return i
}
continue
for _, ch := range chars {
if r == ch {
return i
}
// Generic split: splits after each instance of sep,
// including sepSave bytes of sep in the subslices.
func genSplit(s, sep []byte, sepSave, n int) [][]byte {
if n == 0 {
return nil
}
return explode(s, n)
David Symonds
committed
}
n = Count(s, sep) + 1
if n > len(s)+1 {
n = len(s) + 1
}
n--
i := 0
for i < n {
m := Index(s, sep)
if m < 0 {
break
a[i] = s[: m+sepSave : m+sepSave]
// SplitN slices s into subslices separated by sep and returns a slice of
// the subslices between those separators.
// If sep is empty, SplitN splits after each UTF-8 sequence.
// The count determines the number of subslices to return:
//
// n > 0: at most n subslices; the last subslice will be the unsplit remainder.
// n == 0: the result is nil (zero subslices)
// n < 0: all subslices
//
// To split around the first instance of a separator, see Cut.
func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) }
// SplitAfterN slices s into subslices after each instance of sep and
// returns a slice of those subslices.
// If sep is empty, SplitAfterN splits after each UTF-8 sequence.
// The count determines the number of subslices to return:
//
// n > 0: at most n subslices; the last subslice will be the unsplit remainder.
// n == 0: the result is nil (zero subslices)
// n < 0: all subslices
func SplitAfterN(s, sep []byte, n int) [][]byte {
return genSplit(s, sep, len(sep), n)
// Split slices s into all subslices separated by sep and returns a slice of
// the subslices between those separators.
// If sep is empty, Split splits after each UTF-8 sequence.
// It is equivalent to SplitN with a count of -1.
//
// To split around the first instance of a separator, see Cut.
func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) }
// SplitAfter slices s into all subslices after each instance of sep and
// returns a slice of those subslices.
// If sep is empty, SplitAfter splits after each UTF-8 sequence.
// It is equivalent to SplitAfterN with a count of -1.
func SplitAfter(s, sep []byte) [][]byte {
return genSplit(s, sep, len(sep), -1)
}
var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
// Fields interprets s as a sequence of UTF-8-encoded code points.
// It splits the slice s around each instance of one or more consecutive white space
// characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an
// empty slice if s contains only white space.
func Fields(s []byte) [][]byte {
// First count the fields.
// This is an exact count if s is ASCII, otherwise it is an approximation.
n := 0
wasSpace := 1
// setBits is used to track which bits are set in the bytes of s.
setBits := uint8(0)
for i := 0; i < len(s); i++ {
r := s[i]
setBits |= r
isSpace := int(asciiSpace[r])
n += wasSpace & ^isSpace
wasSpace = isSpace
}
if setBits >= utf8.RuneSelf {
// Some runes in the input slice are not ASCII.
return FieldsFunc(s, unicode.IsSpace)
}
// ASCII fast path
a := make([][]byte, n)
na := 0
fieldStart := 0
i := 0
// Skip spaces in the front of the input.
for i < len(s) && asciiSpace[s[i]] != 0 {
i++
}
fieldStart = i
for i < len(s) {
if asciiSpace[s[i]] == 0 {
a[na] = s[fieldStart:i:i]
na++
i++
// Skip spaces in between fields.
for i < len(s) && asciiSpace[s[i]] != 0 {
if fieldStart < len(s) { // Last field might end at EOF.
a[na] = s[fieldStart:len(s):len(s)]
// FieldsFunc interprets s as a sequence of UTF-8-encoded code points.
// It splits the slice s at each run of code points c satisfying f(c) and
// returns a slice of subslices of s. If all code points in s satisfy f(c), or
// len(s) == 0, an empty slice is returned.
//
// FieldsFunc makes no guarantees about the order in which it calls f(c)
// and assumes that f always returns the same value for a given c.
func FieldsFunc(s []byte, f func(rune) bool) [][]byte {
// A span is used to record a slice of s of the form s[start:end].
// The start index is inclusive and the end index is exclusive.
type span struct {
start int
end int
// Find the field start and end indices.
// Doing this in a separate pass (rather than slicing the string s
// and collecting the result substrings right away) is significantly
// more efficient, possibly due to cache effects.
start := -1 // valid span start if >= 0
for i := 0; i < len(s); {
size := 1
r := rune(s[i])
if r >= utf8.RuneSelf {
r, size = utf8.DecodeRune(s[i:])
if start >= 0 {
spans = append(spans, span{start, i})
start = -1
if start < 0 {
start = i
// Last field might end at EOF.
if start >= 0 {
spans = append(spans, span{start, len(s)})
}
// Create subslices from recorded field indices.
a := make([][]byte, len(spans))
for i, span := range spans {
a[i] = s[span.start:span.end:span.end]
// Join concatenates the elements of s to create a new byte slice. The separator
// sep is placed between elements in the resulting slice.
func Join(s [][]byte, sep []byte) []byte {
if len(s) == 0 {
return []byte{}
// Just return a copy.
var n int
if len(sep) > 0 {
if len(sep) >= maxInt/(len(s)-1) {
panic("bytes: Join output length overflow")
}
n += len(sep) * (len(s) - 1)
}
if len(v) > maxInt-n {
panic("bytes: Join output length overflow")
}
b := bytealg.MakeNoZero(n)
bp := copy(b, s[0])
for _, v := range s[1:] {
// HasPrefix reports whether the byte slice s begins with prefix.
func HasPrefix(s, prefix []byte) bool {
return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix)
// HasSuffix reports whether the byte slice s ends with suffix.
func HasSuffix(s, suffix []byte) bool {
return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix)
// Map returns a copy of the byte slice s with all its characters modified
// according to the mapping function. If mapping returns a negative value, the character is
// dropped from the byte slice with no replacement. The characters in s and the
// output are interpreted as UTF-8-encoded code points.
func Map(mapping func(r rune) rune, s []byte) []byte {
// In the worst case, the slice can grow when mapped, making
// things unpleasant. But it's so rare we barge in assuming it's
// fine. It could also shrink but that falls out naturally.
r := rune(s[i])
if r >= utf8.RuneSelf {
r, wid = utf8.DecodeRune(s[i:])
// Repeat returns a new byte slice consisting of count copies of b.
//
// It panics if count is negative or if the result of (len(b) * count)
// overflows.
func Repeat(b []byte, count int) []byte {
if count == 0 {
return []byte{}
}
// Since we cannot return an error on overflow,
// we should panic if the repeat will generate an overflow.
if count < 0 {
panic("bytes: negative Repeat count")
}
if len(b) >= maxInt/count {
panic("bytes: Repeat output length overflow")
}
n := len(b) * count
if len(b) == 0 {
return []byte{}
}
// Past a certain chunk size it is counterproductive to use
// larger chunks as the source of the write, as when the source
// is too large we are basically just thrashing the CPU D-cache.
// So if the result length is larger than an empirically-found
// limit (8KB), we stop growing the source string once the limit
// is reached and keep reusing the same source string - that
// should therefore be always resident in the L1 cache - until we
// have completed the construction of the result.
// This yields significant speedups (up to +100%) in cases where
// the result length is large (roughly, over L2 cache size).
const chunkLimit = 8 * 1024
chunkMax := n
if chunkMax > chunkLimit {
chunkMax = chunkLimit / len(b) * len(b)
if chunkMax == 0 {
chunkMax = len(b)
}
}
nb := bytealg.MakeNoZero(n)
chunk := bp
if chunk > chunkMax {
chunk = chunkMax
}
bp += copy(nb[bp:], nb[:chunk])
}
// ToUpper returns a copy of the byte slice s with all Unicode letters mapped to
// their upper case.
func ToUpper(s []byte) []byte {
isASCII, hasLower := true, false
for i := 0; i < len(s); i++ {
c := s[i]
if c >= utf8.RuneSelf {
isASCII = false
break
}
hasLower = hasLower || ('a' <= c && c <= 'z')
}
if isASCII { // optimize for ASCII-only byte slices.
if !hasLower {
// Just return a copy.
return append([]byte(""), s...)
}
b := bytealg.MakeNoZero(len(s))
for i := 0; i < len(s); i++ {
c := s[i]
if 'a' <= c && c <= 'z' {
c -= 'a' - 'A'
}
b[i] = c
}
return b
}
return Map(unicode.ToUpper, s)
}
// ToLower returns a copy of the byte slice s with all Unicode letters mapped to
// their lower case.
func ToLower(s []byte) []byte {
isASCII, hasUpper := true, false
for i := 0; i < len(s); i++ {
c := s[i]
if c >= utf8.RuneSelf {
isASCII = false
break
}
hasUpper = hasUpper || ('A' <= c && c <= 'Z')
}
if isASCII { // optimize for ASCII-only byte slices.
if !hasUpper {
return append([]byte(""), s...)
}
b := bytealg.MakeNoZero(len(s))
for i := 0; i < len(s); i++ {
c := s[i]
if 'A' <= c && c <= 'Z' {
c += 'a' - 'A'
}
b[i] = c
}
return b
}
return Map(unicode.ToLower, s)
}
// ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case.
func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) }
// ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// upper case, giving priority to the special casing rules.
func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte {
return Map(c.ToUpper, s)
// ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// lower case, giving priority to the special casing rules.
func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte {
return Map(c.ToLower, s)
// ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// title case, giving priority to the special casing rules.
func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte {
return Map(c.ToTitle, s)
// ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes
// representing invalid UTF-8 replaced with the bytes in replacement, which may be empty.
func ToValidUTF8(s, replacement []byte) []byte {
b := make([]byte, 0, len(s)+len(replacement))
invalid := false // previous byte was from an invalid UTF-8 sequence
for i := 0; i < len(s); {
c := s[i]
if c < utf8.RuneSelf {
i++
invalid = false
continue
}
_, wid := utf8.DecodeRune(s[i:])
if wid == 1 {
i++
if !invalid {
invalid = true
b = append(b, replacement...)
}
continue
}
invalid = false
b = append(b, s[i:i+wid]...)
i += wid
}
return b
}
// isSeparator reports whether the rune could mark a word boundary.
// TODO: update when package unicode captures more of the properties.
return false
}
return true
}
// Letters and digits are not separators
return false
}
// Otherwise, all we can do for now is treat spaces as separators.
// Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin
// words mapped to their title case.
// Deprecated: The rule Title uses for word boundaries does not handle Unicode
// punctuation properly. Use golang.org/x/text/cases instead.
func Title(s []byte) []byte {
// Use a closure here to remember state.
// Hackish but effective. Depends on Map scanning in order and calling
// the closure once per rune.
if isSeparator(prev) {
prev = r
return unicode.ToTitle(r)
}
prev = r
return r
},
s)
}
// TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off
// all leading UTF-8-encoded code points c that satisfy f(c).
func TrimLeftFunc(s []byte, f func(r rune) bool) []byte {
i := indexFunc(s, f, false)
if i == -1 {
return nil
}
return s[i:]
}
// TrimRightFunc returns a subslice of s by slicing off all trailing
// UTF-8-encoded code points c that satisfy f(c).
func TrimRightFunc(s []byte, f func(r rune) bool) []byte {
i := lastIndexFunc(s, f, false)
if i >= 0 && s[i] >= utf8.RuneSelf {
_, wid := utf8.DecodeRune(s[i:])
i += wid
} else {
i++
}
return s[0:i]
}
// TrimFunc returns a subslice of s by slicing off all leading and trailing
// UTF-8-encoded code points c that satisfy f(c).
func TrimFunc(s []byte, f func(r rune) bool) []byte {
return TrimRightFunc(TrimLeftFunc(s, f), f)
}
// TrimPrefix returns s without the provided leading prefix string.
// If s doesn't start with prefix, s is returned unchanged.
func TrimPrefix(s, prefix []byte) []byte {
if HasPrefix(s, prefix) {
return s[len(prefix):]
}
return s
}
// TrimSuffix returns s without the provided trailing suffix string.
// If s doesn't end with suffix, s is returned unchanged.
func TrimSuffix(s, suffix []byte) []byte {
if HasSuffix(s, suffix) {
return s[:len(s)-len(suffix)]
}
return s
}
// IndexFunc interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index in s of the first Unicode
// code point satisfying f(c), or -1 if none do.
return indexFunc(s, f, true)
}
// LastIndexFunc interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index in s of the last Unicode
// code point satisfying f(c), or -1 if none do.
func LastIndexFunc(s []byte, f func(r rune) bool) int {
return lastIndexFunc(s, f, true)
}
// indexFunc is the same as IndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func indexFunc(s []byte, f func(r rune) bool, truth bool) int {
start := 0
for start < len(s) {
wid := 1
r := rune(s[start])
if r >= utf8.RuneSelf {
r, wid = utf8.DecodeRune(s[start:])
return start
start += wid
return -1
// lastIndexFunc is the same as LastIndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int {
for i := len(s); i > 0; {
r, size := rune(s[i-1]), 1
if r >= utf8.RuneSelf {
r, size = utf8.DecodeLastRune(s[0:i])
}
return -1
// asciiSet is a 32-byte value, where each bit represents the presence of a
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
// starting with the least-significant bit of the lowest word to the
// most-significant bit of the highest word, map to the full range of all
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
// ensuring that any non-ASCII character will be reported as not in the set.
// This allocates a total of 32 bytes even though the upper half
// is unused to avoid bounds checks in asciiSet.contains.
type asciiSet [8]uint32
// makeASCIISet creates a set of ASCII characters and reports whether all
// characters in chars are ASCII.
func makeASCIISet(chars string) (as asciiSet, ok bool) {
for i := 0; i < len(chars); i++ {
c := chars[i]
if c >= utf8.RuneSelf {
return as, false
}
as[c/32] |= 1 << (c % 32)
}
return as, true
}
// contains reports whether c is inside the set.
func (as *asciiSet) contains(c byte) bool {
return (as[c/32] & (1 << (c % 32))) != 0
// containsRune is a simplified version of strings.ContainsRune
// to avoid importing the strings package.
// We avoid bytes.ContainsRune to avoid allocating a temporary copy of s.
func containsRune(s string, r rune) bool {
for _, c := range s {
if c == r {
return true
return false
}
// Trim returns a subslice of s by slicing off all leading and
// trailing UTF-8-encoded code points contained in cutset.
func Trim(s []byte, cutset string) []byte {
if len(s) == 0 {
// This is what we've historically done.
return nil
}
if cutset == "" {
return s
}
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0])
}
if as, ok := makeASCIISet(cutset); ok {
return trimLeftASCII(trimRightASCII(s, &as), &as)
}
return trimLeftUnicode(trimRightUnicode(s, cutset), cutset)
}
// TrimLeft returns a subslice of s by slicing off all leading
// UTF-8-encoded code points contained in cutset.
func TrimLeft(s []byte, cutset string) []byte {
if len(s) == 0 {
// This is what we've historically done.
return nil
}
if cutset == "" {
return s
}
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
return trimLeftByte(s, cutset[0])
}
if as, ok := makeASCIISet(cutset); ok {
return trimLeftASCII(s, &as)
}
return trimLeftUnicode(s, cutset)
func trimLeftByte(s []byte, c byte) []byte {
for len(s) > 0 && s[0] == c {
s = s[1:]
}
if len(s) == 0 {
// This is what we've historically done.
return nil
}
func trimLeftASCII(s []byte, as *asciiSet) []byte {
for len(s) > 0 {
if !as.contains(s[0]) {
break
}
s = s[1:]
}
if len(s) == 0 {
// This is what we've historically done.
return nil
}
return s
}