Newer
Older
#!/usr/bin/env python
from functools import cmp_to_key
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import helper_scripts.helper_functions as helper_functions
RESULTS_DIR = "saved/results-run-20241231-vm-p16"
FILTER_RESULTS = []
PLOTS_DIR = "plots"
FEATHERS_DIR = "feathers"
cmap = plt.cm.hsv
# cmap = plt.colormaps.get_cmap("nipy_spectral")
def main():
data = load_data()
# generally they both only seconds for graphs when not generating for single algorithms
# plot_general_plots() # takes about 4 seconds
# plot_lines(data) # takes about 1:50 min
# plot_static_data(data) # takes about 4 min
def load_data():
if os.path.exists(f"{FEATHERS_DIR}/data.feather"):
data = pd.read_feather(f"{FEATHERS_DIR}/data.feather")
else:
data = read_data_into_pandas()
return data
# Reading in the data takes about 11 seconds per scenario
def read_data_into_pandas():
data = pd.DataFrame(
columns=[
"scenario",
"protocol",
"sec_level",
"kem_alg",
"srv_pkt_loss",
"srv_delay",
"srv_jitter",
"srv_duplicate",
"srv_corrupt",
"srv_reorder",
"srv_rate",
"cli_pkt_loss",
"cli_delay",
"cli_jitter",
"cli_duplicate",
"cli_corrupt",
"cli_reorder",
"cli_rate",
"error_count",
"error_rate",
"measurements",
"mean",
"std",
"cv",
"median",
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"skewness",
"kurtosis",
]
)
def get_all_result_files():
result_files = []
for dirpath, _, filenames in os.walk(RESULTS_DIR):
if filenames and not any(
filter_value in dirpath for filter_value in FILTER_RESULTS
):
for filename in filenames:
result_files.append(os.path.join(dirpath, filename))
return result_files
for csv_result_file_name in get_all_result_files():
*_, scenario, protocol, sec_level, kem_alg = csv_result_file_name.split("/")
kem_alg = kem_alg.split(".")[0]
# print(f"csv_result_file_name: {csv_result_file_name}")
result_file_data = pd.read_csv(csv_result_file_name, header=None)
result_file_data = result_file_data.T
df_scenariofile = pd.read_csv(f"testscenarios/scenario_{scenario}.csv")
df_scenariofile = df_scenariofile.drop(
df_scenariofile.columns[0], axis="columns"
)
assert len(result_file_data.columns) == len(df_scenariofile)
for i in range(len(result_file_data.columns)):
measurements_and_error_count = result_file_data.iloc[:, i].tolist()
error_count = measurements_and_error_count[0]
measurements = np.array(measurements_and_error_count[1:])
data.loc[len(data)] = {
"scenario": scenario,
"protocol": protocol,
"sec_level": sec_level,
"kem_alg": kem_alg,
"srv_pkt_loss": df_scenariofile.iloc[i]["srv_pkt_loss"],
"srv_delay": df_scenariofile.iloc[i]["srv_delay"],
"srv_jitter": df_scenariofile.iloc[i]["srv_jitter"],
"srv_duplicate": df_scenariofile.iloc[i]["srv_duplicate"],
"srv_corrupt": df_scenariofile.iloc[i]["srv_corrupt"],
"srv_reorder": df_scenariofile.iloc[i]["srv_reorder"],
"srv_rate": df_scenariofile.iloc[i]["srv_rate"],
"cli_pkt_loss": df_scenariofile.iloc[i]["cli_pkt_loss"],
"cli_delay": df_scenariofile.iloc[i]["cli_delay"],
"cli_jitter": df_scenariofile.iloc[i]["cli_jitter"],
"cli_duplicate": df_scenariofile.iloc[i]["cli_duplicate"],
"cli_corrupt": df_scenariofile.iloc[i]["cli_corrupt"],
"cli_reorder": df_scenariofile.iloc[i]["cli_reorder"],
"cli_rate": df_scenariofile.iloc[i]["cli_rate"],
"error_count": error_count,
"error_rate": error_count / len(measurements),
"measurements": measurements,
"mean": np.mean(measurements),
"std": np.std(measurements),
"cv": np.std(measurements) / np.mean(measurements),
"median": np.median(measurements),
"qtl_01": np.quantile(measurements, 0.01),
"qtl_05": np.quantile(measurements, 0.05),
"qtl_25": np.quantile(measurements, 0.25),
"qtl_75": np.quantile(measurements, 0.75),
"qtl_95": np.quantile(measurements, 0.95),
"qtl_99": np.quantile(measurements, 0.99),
"iqr": scipy.stats.iqr(measurements),
"riqr": scipy.stats.iqr(measurements) / np.median(measurements),
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"skewness": scipy.stats.skew(measurements),
"kurtosis": scipy.stats.kurtosis(measurements),
}
dtypes = {
"scenario": "category",
"protocol": "category",
"sec_level": "category",
"kem_alg": "category",
}
data = data.astype(dtypes)
categories = [
"secp256r1",
"secp384r1",
"secp521r1",
"x25519",
"x448",
"mlkem512",
"p256_mlkem512",
"x25519_mlkem512",
"mlkem768",
"p384_mlkem768",
"x448_mlkem768",
"x25519_mlkem768",
"p256_mlkem768",
"mlkem1024",
"p521_mlkem1024",
"p384_mlkem1024",
"bikel1",
"p256_bikel1",
"x25519_bikel1",
"bikel3",
"p384_bikel3",
"x448_bikel3",
"bikel5",
"p521_bikel5",
"hqc128",
"p256_hqc128",
"x25519_hqc128",
"hqc192",
"p384_hqc192",
"x448_hqc192",
"hqc256",
"p521_hqc256",
"frodo640aes",
"p256_frodo640aes",
"x25519_frodo640aes",
"frodo640shake",
"p256_frodo640shake",
"x25519_frodo640shake",
"frodo976aes",
"p384_frodo976aes",
"x448_frodo976aes",
"frodo976shake",
"p384_frodo976shake",
"x448_frodo976shake",
"frodo1344aes",
"p521_frodo1344aes",
"frodo1344shake",
"p521_frodo1344shake",
]
data["kem_alg"] = pd.Categorical(
data["kem_alg"], categories=categories, ordered=True
)
print(data.head())
print(data.describe())
print(data.info())
print()
print("Scenarios read:", data["scenario"].unique())
os.makedirs(FEATHERS_DIR, mode=0o777, exist_ok=True)
data.to_feather(f"{FEATHERS_DIR}/data.feather")
print("Data written to feather file")
return data
def filter_data(
data,
scenario: str | None = None,
protocol: str | None = None,
sec_level: str | list[str] | None = None,
kem_alg: str | None = None,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
):
filtered_data = data
# print(filtered_data["kem_alg"] == "x25519") # is a boolean series
if scenario is not None:
filtered_data = filtered_data[filtered_data["scenario"] == scenario]
if protocol is not None:
filtered_data = filtered_data[filtered_data["protocol"] == protocol]
if sec_level is not None:
if type(sec_level) == list:
filtered_data = filtered_data[filtered_data["sec_level"].isin(sec_level)]
else:
filtered_data = filtered_data[filtered_data["sec_level"] == sec_level]
if kem_alg is not None:
filtered_data = filtered_data[filtered_data["kem_alg"] == kem_alg]
def drop_columns_with_only_zero_values(data):
# this complicated way is necessary, because measurements is a list of values
filtered_data_without_measurements = data.drop(columns=["measurements"])
zero_columns_to_drop = (filtered_data_without_measurements != 0).any()
zero_columns_to_drop = [
col
for col in filtered_data_without_measurements.columns
if not zero_columns_to_drop[col]
]
return data.drop(columns=zero_columns_to_drop)
if drop_zero_columns and "measurements" in data.columns:
filtered_data = drop_columns_with_only_zero_values(filtered_data)
# if drop_zero_columns:
# filtered_data = drop_columns_with_only_zero_values(filtered_data)
# print(filtered_data["measurements"].head())
# print(filtered_data)
return filtered_data
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def get_x_axis_column_name(scenario: str) -> str:
match scenario:
case "duplicate":
return "srv_duplicate"
case "packetloss":
return "srv_pkt_loss"
case "delay":
return "srv_delay"
case "jitter_delay20ms":
return "srv_jitter"
case "corrupt":
return "srv_corrupt"
case "reorder":
return "srv_reorder"
case "rate_both":
return "srv_rate"
case "rate_client":
return "cli_rate"
case "rate_server":
return "srv_rate"
case "static":
assert False, "static scenario has no x-axis"
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def get_x_axis(scenario, data, length):
match scenario:
case "duplicate":
return data["srv_duplicate"]
case "packetloss":
return data["srv_pkt_loss"]
case "delay":
return data["srv_delay"]
case "jitter_delay20ms":
return data["srv_jitter"]
case "corrupt":
return data["srv_corrupt"]
case "reorder":
return data["srv_reorder"]
case "rate_both":
return data["srv_rate"]
case "rate_client":
return data["cli_rate"]
case "rate_server":
return data["srv_rate"]
case "static":
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def map_security_level_hybrid_together(sec_level: str):
match sec_level:
case "secLevel1":
return ["secLevel1", "secLevel1_hybrid"]
case "secLevel3":
return ["secLevel3", "secLevel3_hybrid"]
case "secLevel5":
return ["secLevel5", "secLevel5_hybrid"]
case "miscLevel":
return "miscLevel"
case _:
return None
def get_color_and_mode(kem_alg: str, combined_with_hybrids: bool = False):
# NOTE maybe just use hle colors directly from the start
primary_mode = "-"
secondary_mode = "--" if combined_with_hybrids else "-"
tertiary_mode = ":" if combined_with_hybrids else "--"
secondary_lightness_factor = 0.9 if combined_with_hybrids else 1
tertiary_lightness_factor = 0.8 if combined_with_hybrids else 0.9
a = 0.8 if combined_with_hybrids else 1
no_algos = 8
match kem_alg:
case "secp256r1":
return cmap(0 / no_algos), primary_mode
case "secp384r1":
return cmap(0.3 / no_algos), primary_mode
case "secp521r1":
return cmap(0.6 / no_algos), primary_mode
case "x25519":
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
case "mlkem512":
return cmap(1 / no_algos), primary_mode
case "p256_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem768":
return cmap(1.3 / no_algos), primary_mode
case "p384_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem1024":
return cmap(1.6 / no_algos), primary_mode
case "p521_mlkem1024":
return (
transform_cmap_color(
cmap(1.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "bikel1":
return cmap(2 / no_algos), primary_mode
case "p256_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel3":
return cmap(2.3 / no_algos), primary_mode
case "p384_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel5":
return cmap(2.6 / no_algos), primary_mode
case "p521_bikel5":
return (
transform_cmap_color(
cmap(2.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "hqc128":
return cmap(4 / no_algos), primary_mode
case "p256_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc192":
return cmap(4.3 / no_algos), primary_mode
case "p384_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc256":
return cmap(4.6 / no_algos), primary_mode
case "p521_hqc256":
return (
transform_cmap_color(
cmap(4.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo640aes":
return cmap(5 / no_algos), primary_mode
case "p256_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo640shake":
return cmap(6 / no_algos), primary_mode
case "p256_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976aes":
return cmap(5.3 / no_algos), primary_mode
case "p384_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976shake":
return cmap(6.3 / no_algos), primary_mode
case "p384_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo1344aes":
return cmap(5.6 / no_algos), primary_mode
case "p521_frodo1344aes":
return (
transform_cmap_color(
cmap(5.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo1344shake":
return cmap(6.6 / no_algos), primary_mode
case "p521_frodo1344shake":
return (
transform_cmap_color(
cmap(6.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem768":
return (
transform_cmap_color(cmap(7 / no_algos), alpha_factor=a),
primary_mode,
)
case "p256_mlkem768":
return (
transform_cmap_color(
cmap(7.5 / no_algos), lightness_factor=secondary_lightness_factor
),
primary_mode,
)
case "p384_mlkem1024":
return (
transform_cmap_color(
cmap(7.99 / no_algos), lightness_factor=tertiary_lightness_factor
),
primary_mode,
)
case _:
print(f"NO COLOR MATCH FOUND FOR {kem_alg}", file=sys.stderr)
sys.exit(1)
def get_color_and_mode_for_protocol(protocol: str):
primary_mode = "-"
no_protocols = 6
match protocol:
case "quic":
return cmap(0 / no_protocols), primary_mode
case "tlstcp":
return cmap(1 / no_protocols), primary_mode
case "cquiche-reno":
return cmap(2 / no_protocols), primary_mode
case "cquiche-cubic":
return cmap(3 / no_protocols), primary_mode
case "cquiche-bbr":
return cmap(4 / no_protocols), primary_mode
case "cquiche-bbr2":
return cmap(5 / no_protocols), primary_mode
case _:
print(f"NO COLOR MATCH FOUND FOR Protocol {protocol}", file=sys.stderr)
sys.exit(1)
def transform_cmap_color(
color, hue_shift=0, saturation_factor=1, lightness_factor=1, alpha_factor=1
):
def value_between(minimum, value, maximum):
return max(minimum, min(value, maximum))
r, g, b, a = color
h, l, s = colorsys.rgb_to_hls(r, g, b)
h += hue_shift
l *= lightness_factor
l = value_between(0, l, 1)
s *= saturation_factor
s = value_between(0, s, 1)
r, g, b = colorsys.hls_to_rgb(h, l, s)
a *= alpha_factor
return r, g, b, a
# plots lines of different statistical values
def plot_lines(data):
def plot_lines_for_sec_level(
data, line_type="median", combined_with_hybrids: bool = False
):
f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/combined-with-hybrids",
mode=0o777,
exist_ok=True,
)
# get all combination of scenario, protocol, sec_level
unique_combinations = data[
["scenario", "protocol", "sec_level"]
].drop_duplicates()
# print(len(unique_combinations))
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
sec_level = row["sec_level"]
if combined_with_hybrids:
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=sec_level,
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
plt.figure()
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values()
):
# color = cmap(idx / len(filtered_data["kem_alg"].unique()))
color, mode = get_color_and_mode(
kem_alg, combined_with_hybrids=combined_with_hybrids
)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
# print(filtered_data_single_kem_alg)
y = filtered_data_single_kem_alg[line_type]
x = get_x_axis(row["scenario"], filtered_data_single_kem_alg, len(y))
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
# )
# print(f"x: {x}")
# print(f"y: {y}")
# plt.fill_between(x, filtered_data_single_kem_alg["qtl_25"], filtered_data_single_kem_alg["qtl_75"], alpha=0.2, color=color)
plt.plot(x, y, linestyle=mode, marker=".", color=color, label=kem_alg)
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
# plt.title(
# f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
# )
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
if combined_with_hybrids:
subdir = "combined-with-hybrids/"
appendix = "-combined-with-hybrids"
plt.savefig(
f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/{subdir}{line_type}-{row['scenario']}-{row['protocol']}-{row['sec_level']}{appendix}.pdf"
)
plt.close()
def plot_lines_for_comparisons_between_protocols(data, line_type="median"):
os.makedirs(
f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s",
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
mode=0o777,
exist_ok=True,
)
# sec_level is only needed for the filename
unique_combinations = data[
["scenario", "kem_alg", "sec_level"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
kem_alg=row["kem_alg"],
)
plt.figure()
for idx, protocol in enumerate(
filtered_data["protocol"].unique().sort_values()
):
color, mode = get_color_and_mode_for_protocol(protocol)
filtered_data_single_protocol = filter_data(
filtered_data, protocol=protocol
)
y = filtered_data_single_protocol[line_type]
x = get_x_axis(row["scenario"], filtered_data_single_protocol, len(y))
plt.plot(x, y, linestyle=mode, marker=".", color=color, label=protocol)
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
plt.savefig(
f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s/{subdir}{line_type}-{row['scenario']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
)
plt.close()
def plot_median_of_single_algorithm(data):
os.makedirs(
f"{PLOTS_DIR}/median-of-single-algorithm", mode=0o777, exist_ok=True
)
# get all combination of scenario, protocol, sec_level, kem_alg
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}")
y = filtered_data["median"]
x = get_x_axis(row["scenario"], filtered_data, len(y))
plt.figure()
plt.fill_between(
x, filtered_data["qtl_25"], filtered_data["qtl_75"], alpha=0.5
)
plt.plot(x, y, linestyle="-", marker=".")
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.title(
f"Median of {row['scenario']} in {row['protocol']} in {row['sec_level']} with {row['kem_alg']}"
)
plt.savefig(
f"{PLOTS_DIR}/median-of-single-algorithm/median-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf"
)
plt.close()
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"riqr",
"skewness",
"kurtosis",
]
for statistical_measurement in statistical_measurements:
print(f"Generating graphs for {statistical_measurement}")
plot_lines_for_sec_level(
data, line_type=statistical_measurement, combined_with_hybrids=False
)
plot_lines_for_sec_level(
data, line_type=statistical_measurement, combined_with_hybrids=True
)
plot_lines_for_comparisons_between_protocols(
data, line_type=statistical_measurement
)
# plot_median_of_single_algorithm(data)
# plot_median_against_iqr(data)
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
# plots distributions of the individual data points
def plot_distributions(data):
os.makedirs(
f"{PLOTS_DIR}/distributions/single",
mode=0o777,
exist_ok=True,
)
def plot_multiple_violin_plots(data, filtered: bool = False):
os.makedirs(
f"{PLOTS_DIR}/distributions/filtered",
mode=0o777,
exist_ok=True,
)
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
if row["scenario"] == "static":
continue
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}, len: {len(filtered_data)}"
# )
# return the data with removed rows and the ticks for the x-axis
scenario = data.iloc[0]["scenario"]
scenario_column_name = get_x_axis_column_name(scenario)
match scenario:
case "packetloss" | "duplicate" | "reorder" | "corrupt":
# return data where src_packetloss is 0, 4, 8, 12, 16 or 20
ldata = data.query(f"{scenario_column_name} % 4 == 0")
case "jitter_delay20ms":
ldata = data[
data[scenario_column_name].isin([0, 3, 7, 12, 15, 20])
]
case "rate_both" | "rate_client" | "rate_server":
ldata = data[
data[scenario_column_name].isin(
[
0.1,
5,
10,
100,
]
)
]
case "delay":
ldata = data[
data[scenario_column_name].isin([1, 20, 40, 80, 100, 190])
]
print("No case for this scenario:", scenario)
ldata = pd.concat(
[
data.iloc[[0]],
data.iloc[3:-4:4],
data.iloc[[-1]],
]
)
return ldata, ldata[scenario_column_name].to_list()
filtered_data, tick_values = remove_rows_of_data(filtered_data)
# print(filtered_data)
# if filtered_data.iloc[0]["scenario"] == "jitter_delay20ms":
plt.figure()
x = get_x_axis(row["scenario"], filtered_data, len(filtered_data))
x = x.to_list()
# print(x)
vplots = plt.violinplot(
filtered_data["measurements"],
positions=x,
showmedians=False,
showextrema=False,
for pc in vplots["bodies"]:
pc.set_facecolor("blue")
pc.set_edgecolor("darkblue")
# make the median line transparent
# for pc in plt.gca().collections:
# pc.set_alpha(0.5)
plt.ylim(bottom=0)
plt.ylim(bottom=0, top=1.5 * filtered_data["qtl_95"].max())
plt.xticks(tick_values)
plt.xlim(left=-1.5)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
subdir = "filtered/" if filtered else ""
appendix = "-filtered" if filtered else ""
plt.savefig(
f"{PLOTS_DIR}/distributions/{subdir}multiple-violin-plots-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
)
plt.close()
def plot_single_violin_plot(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}"
# )
for _, row in filtered_data.iterrows():
if row["scenario"] == "static":
continue
value = get_x_axis(row["scenario"], row, 1)
# print(value)
plt.figure()
plt.violinplot(row["measurements"], showmedians=True)
# plt.ylim(bottom=0)
# plt.xlim(left=0)
plt.xlabel("Dichte")
plt.ylabel(f"Time-to-first-byte (ms)")
plt.savefig(
f"{PLOTS_DIR}/distributions/single/single-violin-plot-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}-{value}.pdf"
)
plt.close()
# return
plot_multiple_violin_plots(data, filtered=False)
plot_multiple_violin_plots(data, filtered=True)
# plot_single_violin_plot(data) # takes an age
# TODO make a violinplot/eventplot for many algos in static scenario
def plot_static_data(data):
os.makedirs(f"{PLOTS_DIR}/static/single", mode=0o777, exist_ok=True)
def plot_static_data_for_multiple_algorithms(data):
unique_combinations = data[["protocol", "sec_level"]].drop_duplicates()
for idx, row in unique_combinations.iterrows():
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=sec_level,
)
iqrs = pd.DataFrame()
# plt.figure(figsize=(6, 6))
plt.figure()
kem_algs = []
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values(),
):
kem_algs.append(kem_alg)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
plt.boxplot(
filtered_data_single_kem_alg["median"],
positions=[idx],
widths=0.6,
)
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
iqrs = pd.concat(
[
iqrs,
pd.DataFrame(
{
"kem_alg": [kem_alg],
"iqr": [
scipy.stats.iqr(
filtered_data_single_kem_alg["median"]
)
],
}
),
],
ignore_index=True,
)
# print(
# f"IQR for {kem_alg}: {scipy.stats.iqr(filtered_data_single_kem_alg['median'])}"
# )
# Get the median irqs for all algorithms
# print(row["protocol"], row["sec_level"])
# print(iqrs)
# print(iqrs["iqr"].describe())
# print("Median:", iqrs["iqr"].median())
# print("IQR:", scipy.stats.iqr(iqrs["iqr"]))
# print()
plt.xticks(
range(len(filtered_data["kem_alg"].unique())),
kem_algs,
rotation=45,
ha="right",
)
plt.xlabel("KEM Algorithms")
plt.ylabel("Time-to-first-byte (ms)")
sec_level_string = (
sec_level if type(sec_level) == str else "-".join(sec_level)
)
plt.tight_layout()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
f"boxplots-of-medians-for-static-{row['protocol']}-{sec_level_string}.pdf",
)
)
plt.close()
def plot_static_data_for_single_algorithms(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
unique_combinations = filter_data(unique_combinations, scenario="static")
for idx, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
def boxplot_of_medians_for_configuration(filtered_data, row):
plt.figure()
plt.boxplot(filtered_data["median"])
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"boxplot-of-medians-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
plt.close()
# why the density of violin plot and kde plot differ, while using the same scott kde just sideways:
# Dove deep into the implementation from matplotlib and scipy, and they seem to calculate scotts factor in the same way, so dunno
def condensed_violin_plot_for_configuration(filtered_data, row):
# for multiple runs of the same static scenario, data taken together
measurements_flattend = filtered_data["measurements"].explode().tolist()
# print(filtered_data["measurements"].explode())
# print(len(measurements_flattend))
plt.figure()
plt.violinplot(measurements_flattend, showmedians=True)
plt.ylabel("Time-to-first-byte (ms)")
plt.xlabel("Dichte")
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-violin-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
plt.close()
def condensed_histogram_plot_for_configuration(filtered_data, row):
measurements_flattend = filtered_data["measurements"].explode().tolist()
plt.figure()
plt.hist(measurements_flattend, bins=100, density=True)
plt.xlabel("Time-to-first-byte (ms)")
plt.ylabel("Dichte")
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-histogram-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
)
plt.close()
def condensed_kernel_density_estimate_plot_for_configuration(
filtered_data, row
):
measurements_flattend = filtered_data["measurements"].explode().tolist()
plt.figure()
kde = scipy.stats.gaussian_kde(measurements_flattend)
xmin = min(measurements_flattend) - 0.2
xmax = max(measurements_flattend) + 0.1
x = np.linspace(
xmin,
xmax,
1000,
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
kde_values = kde(x)
plt.plot(x, kde_values)
plt.fill_between(x, kde_values, alpha=0.5)
plt.xlabel("Time-to-first-byte (ms)")
plt.ylabel("Dichte")
plt.xlim([xmin, xmax])
plt.ylim([0, max(kde_values) + 0.1])
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-kde-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
)
plt.close()
boxplot_of_medians_for_configuration(filtered_data, row)
condensed_violin_plot_for_configuration(filtered_data, row)
condensed_histogram_plot_for_configuration(filtered_data, row)
condensed_kernel_density_estimate_plot_for_configuration(filtered_data, row)
# return
plot_static_data_for_multiple_algorithms(data)
plot_static_data_for_single_algorithms(data)
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
def plot_general_plots():
def get_color_for_kem_algo(kem_algo):
if "mlkem" in kem_algo:
return "blue"
if "bikel" in kem_algo:
return "red"
if "hqc" in kem_algo:
return "green"
if "frodo" in kem_algo:
return "orange"
return "grey"
os.makedirs(f"{PLOTS_DIR}/general", mode=0o777, exist_ok=True)
df = helper_functions.prepare_kem_performance_data_for_plotting(
helper_functions.get_kem_performance_data()
)
def plot_send_bytes_against_kem_performance(df, with_hybrids: bool):
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
plt.figure()
# plt.scatter(df["bytes_sent"], df["performance_us"])
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["bytes_sent"],
subset["performance_us"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
plt.annotate(
txt,
(df["bytes_sent"].iloc[i], df["performance_us"].iloc[i]),
xytext=(0, -3),
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(30)
plt.ylim(30)
# custom tick stuff from claude
def custom_ticks(start, end):
ticks = [start] + [
10**i for i in range(int(np.log10(start)) + 1, int(np.log10(end)) + 1)
]
return ticks
x_ticks = custom_ticks(30, df["bytes_sent"].max())
y_ticks = custom_ticks(30, df["performance_us"].max())
plt.xticks(x_ticks, [f"{int(x):,}" for x in x_ticks])
plt.yticks(y_ticks, [f"{int(y):,}" for y in y_ticks])
plt.xlabel("Bytes sent")
plt.ylabel("Performance (µs)")
name = (
"scatter-of-bytes-sent-against-kem-performance-with-hybrids.pdf"
else "scatter-of-bytes-sent-against-kem-performance.pdf"
)
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
# print(df)
def plot_public_key_length_against_ciphertext_length(
df, with_hybrids: bool, with_lines: bool
):
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
# only keep one for frodo, since they are the same and remove the hash algo
df = df[~df["kem_algo"].str.contains("shake")]
df.loc[:, "kem_algo"] = df["kem_algo"].apply(lambda x: x.replace("aes", ""))
plt.figure()
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["length_public_key"],
subset["length_ciphertext"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
annotate_offset = (0, -3)
if "bikel1" in txt:
annotate_offset = (0, 0)
if "mlkem1024" in txt:
annotate_offset = (0, -7)
plt.annotate(
txt,
(df["length_public_key"].iloc[i], df["length_ciphertext"].iloc[i]),
xytext=annotate_offset,
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
if with_lines:
# reason for these magic numbers in obsidian note [[Packet lengths in QUIC over Ethernet]]
plt.axvline(x=940, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axhline(y=277, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axvline(
x=940 + 1157, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.axhline(
y=277 + 1100, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(10)
plt.ylim(10)
plt.xlabel("Public Key Länge in Bytes")
plt.ylabel("Ciphertext Länge in Bytes")
plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter())
plt.gca().yaxis.set_major_formatter(ticker.ScalarFormatter())
with_hybrids_string = "-with-hybrids" if with_hybrids else ""
with_lines_string = "-with-lines" if with_lines else ""
name = f"scatter-of-public-key-against-ciphertext-length{with_hybrids_string}{with_lines_string}.pdf"
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
# This does not yet seem like a good idea
# TODO use the riqr to make some graphs
def plot_median_against_iqr(data):
plt.figure()
plt.hexbin(data["median"], data["iqr"], gridsize=50)
print(data["iqr"].describe())
print(data["median"].describe())
# get the line with the maximum median
max_median = data["median"].idxmax()
print(data.iloc[max_median])
plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hexbin.pdf")
plt.close()
plt.figure()
plt.hist2d(data["median"], data["iqr"], bins=50)
plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hist2d.pdf")
plt.close()
plot_send_bytes_against_kem_performance(df, with_hybrids=False)
plot_send_bytes_against_kem_performance(df, with_hybrids=True)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=False
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=False
)