Newer
Older
#!/usr/bin/env python
from functools import cmp_to_key
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import helper_scripts.helper_functions as helper_functions
RESULTS_DIR = "saved/results-run-20240921-vm-p16"
FILTER_RESULTS = []
PLOTS_DIR = "plots"
FEATHERS_DIR = "feathers"
cmap = plt.cm.hsv
def main():
data = load_data()
# generally they both only seconds for graphs when not generating for single algorithms
plot_median(data) # takes about 1:50 min
# plot_static_data(data) # takes about 4 min
# plot_general_plots() # takes about 4 seconds
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def load_data():
if os.path.exists(f"{FEATHERS_DIR}/data.feather"):
data = pd.read_feather(f"{FEATHERS_DIR}/data.feather")
else:
data = read_data_into_pandas()
return data
# Reading in the data takes about 10 seconds per scenario
def read_data_into_pandas():
data = pd.DataFrame(
columns=[
"scenario",
"protocol",
"sec_level",
"kem_alg",
"srv_pkt_loss",
"srv_delay",
"srv_jitter",
"srv_duplicate",
"srv_corrupt",
"srv_reorder",
"srv_rate",
"cli_pkt_loss",
"cli_delay",
"cli_jitter",
"cli_duplicate",
"cli_corrupt",
"cli_reorder",
"cli_rate",
"measurements",
"mean",
"std",
"cv",
"median",
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"skewness",
"kurtosis",
]
)
def get_all_result_files():
result_files = []
for dirpath, _, filenames in os.walk(RESULTS_DIR):
if filenames and not any(
filter_value in dirpath for filter_value in FILTER_RESULTS
):
for filename in filenames:
result_files.append(os.path.join(dirpath, filename))
return result_files
for csv_result_file_name in get_all_result_files():
_, scenario, protocol, sec_level, kem_alg = csv_result_file_name.split("/")
kem_alg = kem_alg.split(".")[0]
# print(f"csv_result_file_name: {csv_result_file_name}")
result_file_data = pd.read_csv(csv_result_file_name, header=None)
result_file_data = result_file_data.T
df_scenariofile = pd.read_csv(f"testscenarios/scenario_{scenario}.csv")
df_scenariofile = df_scenariofile.drop(
df_scenariofile.columns[0], axis="columns"
)
assert len(result_file_data.columns) == len(df_scenariofile)
for i in range(len(result_file_data.columns)):
measurements = result_file_data.iloc[:, i].tolist()
measurements = np.array(measurements)
data.loc[len(data)] = {
"scenario": scenario,
"protocol": protocol,
"sec_level": sec_level,
"kem_alg": kem_alg,
"srv_pkt_loss": df_scenariofile.iloc[i]["srv_pkt_loss"],
"srv_delay": df_scenariofile.iloc[i]["srv_delay"],
"srv_jitter": df_scenariofile.iloc[i]["srv_jitter"],
"srv_duplicate": df_scenariofile.iloc[i]["srv_duplicate"],
"srv_corrupt": df_scenariofile.iloc[i]["srv_corrupt"],
"srv_reorder": df_scenariofile.iloc[i]["srv_reorder"],
"srv_rate": df_scenariofile.iloc[i]["srv_rate"],
"cli_pkt_loss": df_scenariofile.iloc[i]["cli_pkt_loss"],
"cli_delay": df_scenariofile.iloc[i]["cli_delay"],
"cli_jitter": df_scenariofile.iloc[i]["cli_jitter"],
"cli_duplicate": df_scenariofile.iloc[i]["cli_duplicate"],
"cli_corrupt": df_scenariofile.iloc[i]["cli_corrupt"],
"cli_reorder": df_scenariofile.iloc[i]["cli_reorder"],
"cli_rate": df_scenariofile.iloc[i]["cli_rate"],
"measurements": measurements,
"mean": np.mean(measurements),
"std": np.std(measurements),
"cv": np.std(measurements) / np.mean(measurements),
"median": np.median(measurements),
"qtl_25": np.quantile(measurements, 0.25),
"qtl_75": np.quantile(measurements, 0.75),
"qtl_95": np.quantile(measurements, 0.95),
"qtl_99": np.quantile(measurements, 0.99),
"iqr": scipy.stats.iqr(measurements),
"skewness": scipy.stats.skew(measurements),
"kurtosis": scipy.stats.kurtosis(measurements),
}
dtypes = {
"scenario": "category",
"protocol": "category",
"sec_level": "category",
"kem_alg": "category",
}
data = data.astype(dtypes)
categories = [
"secp256r1",
"secp384r1",
"secp521r1",
"x25519",
"x448",
"mlkem512",
"p256_mlkem512",
"x25519_mlkem512",
"mlkem768",
"p384_mlkem768",
"x448_mlkem768",
"x25519_mlkem768",
"p256_mlkem768",
"mlkem1024",
"p521_mlkem1024",
"p384_mlkem1024",
"bikel1",
"p256_bikel1",
"x25519_bikel1",
"bikel3",
"p384_bikel3",
"x448_bikel3",
"bikel5",
"p521_bikel5",
"hqc128",
"p256_hqc128",
"x25519_hqc128",
"hqc192",
"p384_hqc192",
"x448_hqc192",
"hqc256",
"p521_hqc256",
"frodo640aes",
"p256_frodo640aes",
"x25519_frodo640aes",
"frodo640shake",
"p256_frodo640shake",
"x25519_frodo640shake",
"frodo976aes",
"p384_frodo976aes",
"x448_frodo976aes",
"frodo976shake",
"p384_frodo976shake",
"x448_frodo976shake",
"frodo1344aes",
"p521_frodo1344aes",
"frodo1344shake",
"p521_frodo1344shake",
]
data["kem_alg"] = pd.Categorical(
data["kem_alg"], categories=categories, ordered=True
)
print(data.head())
print(data.describe())
print(data.info())
print()
print("Scenarios read:", data["scenario"].unique())
os.makedirs(FEATHERS_DIR, mode=0o777, exist_ok=True)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
data.to_feather(f"{FEATHERS_DIR}/data.feather")
print("Data written to feather file")
return data
def filter_data(
data,
scenario: str | None = None,
protocol: str | None = None,
sec_level: str | list[str] | None = None,
kem_alg: str | None = None,
):
filtered_data = data
# print(filtered_data["kem_alg"] == "x25519") # is a boolean series
if scenario is not None:
filtered_data = filtered_data[filtered_data["scenario"] == scenario]
if protocol is not None:
filtered_data = filtered_data[filtered_data["protocol"] == protocol]
if sec_level is not None:
if type(sec_level) == list:
filtered_data = filtered_data[filtered_data["sec_level"].isin(sec_level)]
else:
filtered_data = filtered_data[filtered_data["sec_level"] == sec_level]
if kem_alg is not None:
filtered_data = filtered_data[filtered_data["kem_alg"] == kem_alg]
def drop_columns_with_only_zero_values(data):
# this complicated way is necessary, because measurements is a list of values
filtered_data_without_measurements = data.drop(columns=["measurements"])
zero_columns_to_drop = (filtered_data_without_measurements != 0).any()
zero_columns_to_drop = [
col
for col in filtered_data_without_measurements.columns
if not zero_columns_to_drop[col]
]
return data.drop(columns=zero_columns_to_drop)
filtered_data = drop_columns_with_only_zero_values(filtered_data)
# print(filtered_data["measurements"].head())
# print(filtered_data)
return filtered_data
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def get_x_axis(scenario, data, length):
match scenario:
case "duplicate":
return data["srv_duplicate"]
case "packetloss":
return data["srv_pkt_loss"]
case "delay":
return data["srv_delay"]
case "jitter_delay20":
return data["srv_jitter"]
case "corrupt":
return data["srv_corrupt"]
case "reorder":
return data["srv_reorder"]
case "rate_both":
return data["srv_rate"]
case "rate_client":
return data["cli_rate"]
case "rate_server":
return data["srv_rate"]
case "static":
return list(range(length))
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def map_security_level_hybrid_together(sec_level: str):
match sec_level:
case "secLevel1":
return ["secLevel1", "secLevel1_hybrid"]
case "secLevel3":
return ["secLevel3", "secLevel3_hybrid"]
case "secLevel5":
return ["secLevel5", "secLevel5_hybrid"]
case "miscLevel":
return "miscLevel"
case _:
return None
def plot_median(data):
def plot_median_for_sec_level(data, combined_with_hybrids: bool):
os.makedirs(
f"{PLOTS_DIR}/medians-of-sec-level/combined-with-hybrids",
mode=0o777,
exist_ok=True,
)
# get all combination of scenario, protocol, sec_level
unique_combinations = data[
["scenario", "protocol", "sec_level"]
].drop_duplicates()
# print(len(unique_combinations))
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
sec_level = row["sec_level"]
if combined_with_hybrids:
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=sec_level,
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
plt.figure()
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values()
):
color = cmap(idx / len(filtered_data["kem_alg"].unique()))
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
# print(filtered_data_single_kem_alg)
y = filtered_data_single_kem_alg["median"]
x = get_x_axis(row["scenario"], filtered_data_single_kem_alg, len(y))
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
# )
# print(f"x: {x}")
# print(f"y: {y}")
# plt.fill_between(x, filtered_data_single_kem_alg["qtl_25"], filtered_data_single_kem_alg["qtl_75"], alpha=0.2, color=color)
plt.plot(x, y, linestyle="-", marker=".", color=color, label=kem_alg)
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
# plt.title(
# f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
# )
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
if combined_with_hybrids:
subdir = "combined-with-hybrids/"
appendix = "-combined-with-hybrids"
plt.savefig(
f"{PLOTS_DIR}/medians-of-sec-level/{subdir}median-{row['scenario']}-{row['protocol']}-{row['sec_level']}{appendix}.png"
)
plt.close()
def plot_median_of_single_algorithm(data):
os.makedirs(
f"{PLOTS_DIR}/median-of-single-algorithm", mode=0o777, exist_ok=True
)
# get all combination of scenario, protocol, sec_level, kem_alg
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}")
y = filtered_data["median"]
x = get_x_axis(row["scenario"], filtered_data, len(y))
plt.figure()
plt.fill_between(
x, filtered_data["qtl_25"], filtered_data["qtl_75"], alpha=0.5
)
plt.plot(x, y, linestyle="-", marker=".")
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.title(
f"Median of {row['scenario']} in {row['protocol']} in {row['sec_level']} with {row['kem_alg']}"
)
plt.savefig(
f"{PLOTS_DIR}/median-of-single-algorithm/median-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.png"
)
plt.close()
# This does not yet seem like a good idea
def plot_median_against_iqr(data):
plt.figure()
plt.hexbin(data["median"], data["iqr"], gridsize=50)
print(data["iqr"].describe())
print(data["median"].describe())
# get the line with the maximum median
max_median = data["median"].idxmax()
print(data.iloc[max_median])
plt.savefig(f"{PLOTS_DIR}/median_against_iqr_hexbin.png")
plt.figure()
plt.hist2d(data["median"], data["iqr"], bins=50)
plt.savefig(f"{PLOTS_DIR}/median_against_iqr_hist2d.png")
plot_median_for_sec_level(data, combined_with_hybrids=False)
plot_median_for_sec_level(data, combined_with_hybrids=True)
# plot_median_of_single_algorithm(data)
# plot_median_against_iqr(data)
# TODO make a violinplot/eventplot for many algos in static scenario
def plot_static_data(data):
os.makedirs(f"{PLOTS_DIR}/static/single", mode=0o777, exist_ok=True)
def plot_static_data_for_multiple_algorithms(data):
unique_combinations = data[["protocol", "sec_level"]].drop_duplicates()
for idx, row in unique_combinations.iterrows():
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=sec_level,
)
# plt.figure(figsize=(6, 6))
plt.figure()
kem_algs = []
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values(),
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
):
kem_algs.append(kem_alg)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
plt.boxplot(
filtered_data_single_kem_alg["median"],
positions=[idx],
widths=0.6,
)
plt.xticks(
range(len(filtered_data["kem_alg"].unique())),
kem_algs,
rotation=45,
ha="right",
)
plt.xlabel("KEM Algorithms")
plt.ylabel("Time-to-first-byte (ms)")
sec_level_string = (
sec_level if type(sec_level) == str else "-".join(sec_level)
)
plt.tight_layout()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
f"boxplots-of-medians-for-static-{row['protocol']}-{sec_level_string}.png",
)
)
plt.close()
def plot_static_data_for_single_algorithms(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for idx, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
plt.figure()
plt.boxplot(filtered_data["median"])
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"boxplot-of-medians-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.png",
)
)
plt.close()
plt.figure()
plt.violinplot(filtered_data["measurements"], showmedians=True)
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"multiple-violin-plots-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.png",
)
)
plt.close()
# for multiple runs of the same static scenario, data taken together
measurements_flattend = filtered_data["measurements"].explode().tolist()
# print(filtered_data["measurements"].explode())
# print(len(measurements_flattend))
plt.figure()
plt.violinplot(measurements_flattend, showmedians=True)
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-violin-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.png",
)
)
plt.close()
plot_static_data_for_multiple_algorithms(data)
plot_static_data_for_single_algorithms(data)
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
def plot_general_plots():
def get_color_for_kem_algo(kem_algo):
if "mlkem" in kem_algo:
return "blue"
if "bikel" in kem_algo:
return "red"
if "hqc" in kem_algo:
return "green"
if "frodo" in kem_algo:
return "orange"
return "grey"
os.makedirs(f"{PLOTS_DIR}/general", mode=0o777, exist_ok=True)
df = helper_functions.prepare_kem_performance_data_for_plotting(
helper_functions.get_kem_performance_data()
)
def plot_send_bytes_against_kem_performance(df, with_hybrids: bool):
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
plt.figure()
# plt.scatter(df["bytes_sent"], df["performance_us"])
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["bytes_sent"],
subset["performance_us"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
plt.annotate(
txt,
(df["bytes_sent"].iloc[i], df["performance_us"].iloc[i]),
xytext=(0, -3),
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(30)
plt.ylim(30)
# custom tick stuff from claude
def custom_ticks(start, end):
ticks = [start] + [
10**i for i in range(int(np.log10(start)) + 1, int(np.log10(end)) + 1)
]
return ticks
x_ticks = custom_ticks(30, df["bytes_sent"].max())
y_ticks = custom_ticks(30, df["performance_us"].max())
plt.xticks(x_ticks, [f"{int(x):,}" for x in x_ticks])
plt.yticks(y_ticks, [f"{int(y):,}" for y in y_ticks])
plt.xlabel("Bytes sent")
plt.ylabel("Performance (µs)")
name = (
"scatter-of-bytes-sent-against-kem-performance-with-hybrids.png"
if with_hybrids
else "scatter-of-bytes-sent-against-kem-performance.png"
)
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
# print(df)
def plot_public_key_length_against_ciphertext_length(
df, with_hybrids: bool, with_lines: bool
):
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
# only keep one for frodo, since they are the same and remove the hash algo
df = df[~df["kem_algo"].str.contains("shake")]
df.loc[:, "kem_algo"] = df["kem_algo"].apply(lambda x: x.replace("aes", ""))
plt.figure()
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["length_public_key"],
subset["length_ciphertext"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
annotate_offset = (0, -3)
if "bikel1" in txt:
annotate_offset = (0, 0)
if "mlkem1024" in txt:
annotate_offset = (0, -7)
plt.annotate(
txt,
(df["length_public_key"].iloc[i], df["length_ciphertext"].iloc[i]),
xytext=annotate_offset,
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
if with_lines:
# reason for these magic numbers in obsidian note [[Packet lengths in QUIC over Ethernet]]
plt.axvline(x=940, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axhline(y=277, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axvline(
x=940 + 1157, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.axhline(
y=277 + 1100, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(10)
plt.ylim(10)
plt.xlabel("Public Key Länge in Bytes")
plt.ylabel("Ciphertext Länge in Bytes")
plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter())
plt.gca().yaxis.set_major_formatter(ticker.ScalarFormatter())
with_hybrids_string = "-with-hybrids" if with_hybrids else ""
with_lines_string = "with-lines" if with_lines else ""
name = f"scatter-of-public-key-agains-ciphertext-length-{with_hybrids_string}-{with_lines_string}.png"
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
plot_send_bytes_against_kem_performance(df, with_hybrids=False)
plot_send_bytes_against_kem_performance(df, with_hybrids=True)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=False
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=False
)