Newer
Older
#!/usr/bin/env python
from functools import cmp_to_key
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import helper_scripts.helper_functions as helper_functions
RESULTS_DIR = "saved/results-run-20241030-vm-p16"
FILTER_RESULTS = []
PLOTS_DIR = "plots"
FEATHERS_DIR = "feathers"
cmap = plt.cm.hsv
# cmap = plt.colormaps.get_cmap("nipy_spectral")
def main():
data = load_data()
# generally they both only seconds for graphs when not generating for single algorithms
# plot_general_plots() # takes about 4 seconds
# plot_lines(data) # takes about 1:50 min
# plot_static_data(data) # takes about 4 min
plot_distributions(data)
def load_data():
if os.path.exists(f"{FEATHERS_DIR}/data.feather"):
data = pd.read_feather(f"{FEATHERS_DIR}/data.feather")
else:
data = read_data_into_pandas()
return data
# Reading in the data takes about 11 seconds per scenario
def read_data_into_pandas():
data = pd.DataFrame(
columns=[
"scenario",
"protocol",
"sec_level",
"kem_alg",
"srv_pkt_loss",
"srv_delay",
"srv_jitter",
"srv_duplicate",
"srv_corrupt",
"srv_reorder",
"srv_rate",
"cli_pkt_loss",
"cli_delay",
"cli_jitter",
"cli_duplicate",
"cli_corrupt",
"cli_reorder",
"cli_rate",
"error_count",
"error_rate",
"measurements",
"mean",
"std",
"cv",
"median",
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"skewness",
"kurtosis",
]
)
def get_all_result_files():
result_files = []
for dirpath, _, filenames in os.walk(RESULTS_DIR):
if filenames and not any(
filter_value in dirpath for filter_value in FILTER_RESULTS
):
for filename in filenames:
result_files.append(os.path.join(dirpath, filename))
return result_files
for csv_result_file_name in get_all_result_files():
*_, scenario, protocol, sec_level, kem_alg = csv_result_file_name.split("/")
kem_alg = kem_alg.split(".")[0]
# print(f"csv_result_file_name: {csv_result_file_name}")
result_file_data = pd.read_csv(csv_result_file_name, header=None)
result_file_data = result_file_data.T
df_scenariofile = pd.read_csv(f"testscenarios/scenario_{scenario}.csv")
df_scenariofile = df_scenariofile.drop(
df_scenariofile.columns[0], axis="columns"
)
assert len(result_file_data.columns) == len(df_scenariofile)
for i in range(len(result_file_data.columns)):
measurements_and_error_count = result_file_data.iloc[:, i].tolist()
error_count = measurements_and_error_count[0]
measurements = np.array(measurements_and_error_count[1:])
data.loc[len(data)] = {
"scenario": scenario,
"protocol": protocol,
"sec_level": sec_level,
"kem_alg": kem_alg,
"srv_pkt_loss": df_scenariofile.iloc[i]["srv_pkt_loss"],
"srv_delay": df_scenariofile.iloc[i]["srv_delay"],
"srv_jitter": df_scenariofile.iloc[i]["srv_jitter"],
"srv_duplicate": df_scenariofile.iloc[i]["srv_duplicate"],
"srv_corrupt": df_scenariofile.iloc[i]["srv_corrupt"],
"srv_reorder": df_scenariofile.iloc[i]["srv_reorder"],
"srv_rate": df_scenariofile.iloc[i]["srv_rate"],
"cli_pkt_loss": df_scenariofile.iloc[i]["cli_pkt_loss"],
"cli_delay": df_scenariofile.iloc[i]["cli_delay"],
"cli_jitter": df_scenariofile.iloc[i]["cli_jitter"],
"cli_duplicate": df_scenariofile.iloc[i]["cli_duplicate"],
"cli_corrupt": df_scenariofile.iloc[i]["cli_corrupt"],
"cli_reorder": df_scenariofile.iloc[i]["cli_reorder"],
"cli_rate": df_scenariofile.iloc[i]["cli_rate"],
"error_count": error_count,
"error_rate": error_count / len(measurements),
"measurements": measurements,
"mean": np.mean(measurements),
"std": np.std(measurements),
"cv": np.std(measurements) / np.mean(measurements),
"median": np.median(measurements),
"qtl_01": np.quantile(measurements, 0.01),
"qtl_05": np.quantile(measurements, 0.05),
"qtl_25": np.quantile(measurements, 0.25),
"qtl_75": np.quantile(measurements, 0.75),
"qtl_95": np.quantile(measurements, 0.95),
"qtl_99": np.quantile(measurements, 0.99),
"iqr": scipy.stats.iqr(measurements),
"riqr": scipy.stats.iqr(measurements) / np.median(measurements),
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"skewness": scipy.stats.skew(measurements),
"kurtosis": scipy.stats.kurtosis(measurements),
}
dtypes = {
"scenario": "category",
"protocol": "category",
"sec_level": "category",
"kem_alg": "category",
}
data = data.astype(dtypes)
categories = [
"secp256r1",
"secp384r1",
"secp521r1",
"x25519",
"x448",
"mlkem512",
"p256_mlkem512",
"x25519_mlkem512",
"mlkem768",
"p384_mlkem768",
"x448_mlkem768",
"x25519_mlkem768",
"p256_mlkem768",
"mlkem1024",
"p521_mlkem1024",
"p384_mlkem1024",
"bikel1",
"p256_bikel1",
"x25519_bikel1",
"bikel3",
"p384_bikel3",
"x448_bikel3",
"bikel5",
"p521_bikel5",
"hqc128",
"p256_hqc128",
"x25519_hqc128",
"hqc192",
"p384_hqc192",
"x448_hqc192",
"hqc256",
"p521_hqc256",
"frodo640aes",
"p256_frodo640aes",
"x25519_frodo640aes",
"frodo640shake",
"p256_frodo640shake",
"x25519_frodo640shake",
"frodo976aes",
"p384_frodo976aes",
"x448_frodo976aes",
"frodo976shake",
"p384_frodo976shake",
"x448_frodo976shake",
"frodo1344aes",
"p521_frodo1344aes",
"frodo1344shake",
"p521_frodo1344shake",
]
data["kem_alg"] = pd.Categorical(
data["kem_alg"], categories=categories, ordered=True
)
print(data.head())
print(data.describe())
print(data.info())
print()
print("Scenarios read:", data["scenario"].unique())
os.makedirs(FEATHERS_DIR, mode=0o777, exist_ok=True)
data.to_feather(f"{FEATHERS_DIR}/data.feather")
print("Data written to feather file")
return data
def filter_data(
data,
scenario: str | None = None,
protocol: str | None = None,
sec_level: str | list[str] | None = None,
kem_alg: str | None = None,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
):
filtered_data = data
# print(filtered_data["kem_alg"] == "x25519") # is a boolean series
if scenario is not None:
filtered_data = filtered_data[filtered_data["scenario"] == scenario]
if protocol is not None:
filtered_data = filtered_data[filtered_data["protocol"] == protocol]
if sec_level is not None:
if type(sec_level) == list:
filtered_data = filtered_data[filtered_data["sec_level"].isin(sec_level)]
else:
filtered_data = filtered_data[filtered_data["sec_level"] == sec_level]
if kem_alg is not None:
filtered_data = filtered_data[filtered_data["kem_alg"] == kem_alg]
def drop_columns_with_only_zero_values(data):
# this complicated way is necessary, because measurements is a list of values
filtered_data_without_measurements = data.drop(columns=["measurements"])
zero_columns_to_drop = (filtered_data_without_measurements != 0).any()
zero_columns_to_drop = [
col
for col in filtered_data_without_measurements.columns
if not zero_columns_to_drop[col]
]
return data.drop(columns=zero_columns_to_drop)
if drop_zero_columns and "measurements" in data.columns:
filtered_data = drop_columns_with_only_zero_values(filtered_data)
# if drop_zero_columns:
# filtered_data = drop_columns_with_only_zero_values(filtered_data)
# print(filtered_data["measurements"].head())
# print(filtered_data)
return filtered_data
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def get_x_axis_column_name(scenario: str) -> str:
match scenario:
case "duplicate":
return "srv_duplicate"
case "packetloss":
return "srv_pkt_loss"
case "delay":
return "srv_delay"
case "jitter_delay20ms":
return "srv_jitter"
case "corrupt":
return "srv_corrupt"
case "reorder":
return "srv_reorder"
case "rate_both":
return "srv_rate"
case "rate_client":
return "cli_rate"
case "rate_server":
return "srv_rate"
case "static":
assert False, "static scenario has no x-axis"
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def get_x_axis(scenario, data, length):
match scenario:
case "duplicate":
return data["srv_duplicate"]
case "packetloss":
return data["srv_pkt_loss"]
case "delay":
return data["srv_delay"]
case "jitter_delay20ms":
return data["srv_jitter"]
case "corrupt":
return data["srv_corrupt"]
case "reorder":
return data["srv_reorder"]
case "rate_both":
return data["srv_rate"]
case "rate_client":
return data["cli_rate"]
case "rate_server":
return data["srv_rate"]
case "static":
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def map_security_level_hybrid_together(sec_level: str):
match sec_level:
case "secLevel1":
return ["secLevel1", "secLevel1_hybrid"]
case "secLevel3":
return ["secLevel3", "secLevel3_hybrid"]
case "secLevel5":
return ["secLevel5", "secLevel5_hybrid"]
case "miscLevel":
return "miscLevel"
case _:
return None
def get_color_and_mode(kem_alg: str, combined_with_hybrids: bool = False):
# NOTE maybe just use hle colors directly from the start
primary_mode = "-"
secondary_mode = "--" if combined_with_hybrids else "-"
tertiary_mode = ":" if combined_with_hybrids else "--"
secondary_lightness_factor = 0.9 if combined_with_hybrids else 1
tertiary_lightness_factor = 0.8 if combined_with_hybrids else 0.9
a = 0.8 if combined_with_hybrids else 1
no_algos = 8
match kem_alg:
case "secp256r1":
return cmap(0 / no_algos), primary_mode
case "secp384r1":
return cmap(0.3 / no_algos), primary_mode
case "secp521r1":
return cmap(0.6 / no_algos), primary_mode
case "x25519":
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
case "mlkem512":
return cmap(1 / no_algos), primary_mode
case "p256_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem768":
return cmap(1.3 / no_algos), primary_mode
case "p384_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem1024":
return cmap(1.6 / no_algos), primary_mode
case "p521_mlkem1024":
return (
transform_cmap_color(
cmap(1.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "bikel1":
return cmap(2 / no_algos), primary_mode
case "p256_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel3":
return cmap(2.3 / no_algos), primary_mode
case "p384_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel5":
return cmap(2.6 / no_algos), primary_mode
case "p521_bikel5":
return (
transform_cmap_color(
cmap(2.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "hqc128":
return cmap(4 / no_algos), primary_mode
case "p256_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc192":
return cmap(4.3 / no_algos), primary_mode
case "p384_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc256":
return cmap(4.6 / no_algos), primary_mode
case "p521_hqc256":
return (
transform_cmap_color(
cmap(4.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo640aes":
return cmap(5 / no_algos), primary_mode
case "p256_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo640shake":
return cmap(6 / no_algos), primary_mode
case "p256_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976aes":
return cmap(5.3 / no_algos), primary_mode
case "p384_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976shake":
return cmap(6.3 / no_algos), primary_mode
case "p384_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo1344aes":
return cmap(5.6 / no_algos), primary_mode
case "p521_frodo1344aes":
return (
transform_cmap_color(
cmap(5.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo1344shake":
return cmap(6.6 / no_algos), primary_mode
case "p521_frodo1344shake":
return (
transform_cmap_color(
cmap(6.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem768":
return (
transform_cmap_color(cmap(7 / no_algos), alpha_factor=a),
primary_mode,
)
case "p256_mlkem768":
return (
transform_cmap_color(
cmap(7.5 / no_algos), lightness_factor=secondary_lightness_factor
),
primary_mode,
)
case "p384_mlkem1024":
return (
transform_cmap_color(
cmap(7.99 / no_algos), lightness_factor=tertiary_lightness_factor
),
primary_mode,
)
case _:
print(f"NO COLOR MATCH FOUND FOR {kem_alg}", file=sys.stderr)
sys.exit(1)
def transform_cmap_color(
color, hue_shift=0, saturation_factor=1, lightness_factor=1, alpha_factor=1
):
def value_between(minimum, value, maximum):
return max(minimum, min(value, maximum))
r, g, b, a = color
h, l, s = colorsys.rgb_to_hls(r, g, b)
h += hue_shift
l *= lightness_factor
l = value_between(0, l, 1)
s *= saturation_factor
s = value_between(0, s, 1)
r, g, b = colorsys.hls_to_rgb(h, l, s)
a *= alpha_factor
return r, g, b, a
# plots lines of different statistical values
def plot_lines(data):
def plot_lines_for_sec_level(
data, line_type="median", combined_with_hybrids: bool = False
):
f"{PLOTS_DIR}/{line_type}s-of-sec-level/combined-with-hybrids",
mode=0o777,
exist_ok=True,
)
# get all combination of scenario, protocol, sec_level
unique_combinations = data[
["scenario", "protocol", "sec_level"]
].drop_duplicates()
# print(len(unique_combinations))
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
sec_level = row["sec_level"]
if combined_with_hybrids:
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=sec_level,
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
plt.figure()
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values()
):
# color = cmap(idx / len(filtered_data["kem_alg"].unique()))
color, mode = get_color_and_mode(
kem_alg, combined_with_hybrids=combined_with_hybrids
)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
# print(filtered_data_single_kem_alg)
y = filtered_data_single_kem_alg[line_type]
x = get_x_axis(row["scenario"], filtered_data_single_kem_alg, len(y))
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
# )
# print(f"x: {x}")
# print(f"y: {y}")
# plt.fill_between(x, filtered_data_single_kem_alg["qtl_25"], filtered_data_single_kem_alg["qtl_75"], alpha=0.2, color=color)
plt.plot(x, y, linestyle=mode, marker=".", color=color, label=kem_alg)
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
# plt.title(
# f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
# )
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
if combined_with_hybrids:
subdir = "combined-with-hybrids/"
appendix = "-combined-with-hybrids"
plt.savefig(
f"{PLOTS_DIR}/{line_type}s-of-sec-level/{subdir}{line_type}-{row['scenario']}-{row['protocol']}-{row['sec_level']}{appendix}.pdf"
)
plt.close()
def plot_median_of_single_algorithm(data):
os.makedirs(
f"{PLOTS_DIR}/median-of-single-algorithm", mode=0o777, exist_ok=True
)
# get all combination of scenario, protocol, sec_level, kem_alg
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}")
y = filtered_data["median"]
x = get_x_axis(row["scenario"], filtered_data, len(y))
plt.figure()
plt.fill_between(
x, filtered_data["qtl_25"], filtered_data["qtl_75"], alpha=0.5
)
plt.plot(x, y, linestyle="-", marker=".")
plt.ylim(bottom=0)
plt.xlim(left=0)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.title(
f"Median of {row['scenario']} in {row['protocol']} in {row['sec_level']} with {row['kem_alg']}"
)
plt.savefig(
f"{PLOTS_DIR}/median-of-single-algorithm/median-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf"
)
plt.close()
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"riqr",
"skewness",
"kurtosis",
]
for thing in do_graphs_for:
print(f"Generating graphs for {thing}")
plot_lines_for_sec_level(data, line_type=thing, combined_with_hybrids=False)
plot_lines_for_sec_level(data, line_type=thing, combined_with_hybrids=True)
# plot_median_of_single_algorithm(data)
# plot_median_against_iqr(data)
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# plots distributions of the individual data points
def plot_distributions(data):
os.makedirs(
f"{PLOTS_DIR}/distributions/single",
mode=0o777,
exist_ok=True,
)
def plot_multiple_violin_plots(data, filtered: bool = False):
os.makedirs(
f"{PLOTS_DIR}/distributions/filtered",
mode=0o777,
exist_ok=True,
)
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
if row["scenario"] == "static":
continue
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}, len: {len(filtered_data)}"
# )
# return the data with removed rows and the ticks for the x-axis
scenario = data.iloc[0]["scenario"]
scenario_column_name = get_x_axis_column_name(scenario)
match scenario:
case "packetloss" | "duplicate" | "reorder" | "corrupt":
# return data where src_packetloss is 0, 4, 8, 12, 16 or 20
ldata = data.query(f"{scenario_column_name} % 4 == 0")
case "jitter_delay20ms":
ldata = data[
data[scenario_column_name].isin([0, 3, 7, 12, 15, 20])
]
case "rate_both" | "rate_client" | "rate_server":
ldata = data[
data[scenario_column_name].isin(
[
0.1,
5,
10,
100,
]
)
]
case "delay":
ldata = data[
data[scenario_column_name].isin([1, 20, 40, 80, 100, 190])
]
print("No case for this scenario:", scenario)
ldata = pd.concat(
[
data.iloc[[0]],
data.iloc[3:-4:4],
data.iloc[[-1]],
]
)
return ldata, ldata[scenario_column_name].to_list()
filtered_data, tick_values = remove_rows_of_data(filtered_data)
# print(filtered_data)
# if filtered_data.iloc[0]["scenario"] == "jitter_delay20ms":
plt.figure()
x = get_x_axis(row["scenario"], filtered_data, len(filtered_data))
x = x.to_list()
# print(x)
vplots = plt.violinplot(
filtered_data["measurements"],
positions=x,
showmedians=False,
showextrema=False,
for pc in vplots["bodies"]:
pc.set_facecolor("blue")
pc.set_edgecolor("darkblue")
# make the median line transparent
# for pc in plt.gca().collections:
# pc.set_alpha(0.5)
plt.ylim(bottom=0)
plt.ylim(bottom=0, top=1.5 * filtered_data["qtl_95"].max())
plt.xticks(tick_values)
plt.xlim(left=-1.5)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
subdir = "filtered/" if filtered else ""
appendix = "-filtered" if filtered else ""
plt.savefig(
f"{PLOTS_DIR}/distributions/{subdir}multiple-violin-plots-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
)
plt.close()
def plot_single_violin_plot(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}"
# )
for _, row in filtered_data.iterrows():
if row["scenario"] == "static":
continue
value = get_x_axis(row["scenario"], row, 1)
# print(value)
plt.figure()
plt.violinplot(row["measurements"], showmedians=True)
# plt.ylim(bottom=0)
# plt.xlim(left=0)
plt.xlabel("Dichte")
plt.ylabel(f"Time-to-first-byte (ms)")
plt.savefig(
f"{PLOTS_DIR}/distributions/single/single-violin-plot-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}-{value}.pdf"
)
plt.close()
# return
# plot_multiple_violin_plots(data, filtered=False)
plot_multiple_violin_plots(data, filtered=True)
# plot_single_violin_plot(data) # takes an age
# TODO make a violinplot/eventplot for many algos in static scenario
def plot_static_data(data):
os.makedirs(f"{PLOTS_DIR}/static/single", mode=0o777, exist_ok=True)
def plot_static_data_for_multiple_algorithms(data):
unique_combinations = data[["protocol", "sec_level"]].drop_duplicates()
for idx, row in unique_combinations.iterrows():
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=sec_level,
)
iqrs = pd.DataFrame()
# plt.figure(figsize=(6, 6))
plt.figure()
kem_algs = []
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values(),
):
kem_algs.append(kem_alg)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
plt.boxplot(
filtered_data_single_kem_alg["median"],
positions=[idx],
widths=0.6,
)
iqrs = pd.concat(
[
iqrs,
pd.DataFrame(
{
"kem_alg": [kem_alg],
"iqr": [
scipy.stats.iqr(
filtered_data_single_kem_alg["median"]
)
],
}
),
],
ignore_index=True,
)
# print(
# f"IQR for {kem_alg}: {scipy.stats.iqr(filtered_data_single_kem_alg['median'])}"
# )
# Get the median irqs for all algorithms