Newer
Older
#!/usr/bin/env python
from functools import cmp_to_key
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy
import helper_scripts.helper_functions as helper_functions
import helper_scripts.performance_eval_of_oqs as performance_eval_of_oqs
RESULTS_DIR = "saved/results-run-20250207-vm-p16"
FILTER_RESULTS = []
PLOTS_DIR = "plots"
FEATHERS_DIR = "feathers"
cmap = plt.cm.hsv
# cmap = plt.colormaps.get_cmap("nipy_spectral")
def main():
data = load_data()
# generally they both only seconds for graphs when not generating for single algorithms
plot_general_plots() # takes about 4 seconds
plot_lines(data) # takes about 1:50 min
plot_static_data(data) # takes about 4 min
def load_data():
if os.path.exists(f"{FEATHERS_DIR}/data.feather"):
data = pd.read_feather(f"{FEATHERS_DIR}/data.feather")
else:
data = read_data_into_pandas()
return data
# Reading in the data takes about 11 seconds per scenario
def read_data_into_pandas():
data = pd.DataFrame(
columns=[
"scenario",
"protocol",
"sec_level",
"kem_alg",
"srv_pkt_loss",
"srv_delay",
"srv_jitter",
"srv_duplicate",
"srv_corrupt",
"srv_reorder",
"srv_rate",
"cli_pkt_loss",
"cli_delay",
"cli_jitter",
"cli_duplicate",
"cli_corrupt",
"cli_reorder",
"cli_rate",
"error_count",
"error_rate",
"measurements",
"mean",
"std",
"cv",
"median",
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"skewness",
"kurtosis",
]
)
def get_all_result_files():
result_files = []
for dirpath, _, filenames in os.walk(RESULTS_DIR):
if filenames and not any(
filter_value in dirpath for filter_value in FILTER_RESULTS
):
for filename in filenames:
result_files.append(os.path.join(dirpath, filename))
return result_files
for csv_result_file_name in get_all_result_files():
*_, scenario, protocol, sec_level, kem_alg = csv_result_file_name.split("/")
kem_alg = kem_alg.split(".")[0]
# print(f"csv_result_file_name: {csv_result_file_name}")
result_file_data = pd.read_csv(csv_result_file_name, header=None)
result_file_data = result_file_data.T
df_scenariofile = pd.read_csv(f"testscenarios/scenario_{scenario}.csv")
df_scenariofile = df_scenariofile.drop(
df_scenariofile.columns[0], axis="columns"
)
assert len(result_file_data.columns) == len(df_scenariofile)
for i in range(len(result_file_data.columns)):
measurements_and_error_count = result_file_data.iloc[:, i].tolist()
error_count = measurements_and_error_count[0]
measurements = np.array(measurements_and_error_count[1:])
data.loc[len(data)] = {
"scenario": scenario,
"protocol": protocol,
"sec_level": sec_level,
"kem_alg": kem_alg,
"srv_pkt_loss": df_scenariofile.iloc[i]["srv_pkt_loss"],
"srv_delay": df_scenariofile.iloc[i]["srv_delay"],
"srv_jitter": df_scenariofile.iloc[i]["srv_jitter"],
"srv_duplicate": df_scenariofile.iloc[i]["srv_duplicate"],
"srv_corrupt": df_scenariofile.iloc[i]["srv_corrupt"],
"srv_reorder": df_scenariofile.iloc[i]["srv_reorder"],
"srv_rate": df_scenariofile.iloc[i]["srv_rate"],
"cli_pkt_loss": df_scenariofile.iloc[i]["cli_pkt_loss"],
"cli_delay": df_scenariofile.iloc[i]["cli_delay"],
"cli_jitter": df_scenariofile.iloc[i]["cli_jitter"],
"cli_duplicate": df_scenariofile.iloc[i]["cli_duplicate"],
"cli_corrupt": df_scenariofile.iloc[i]["cli_corrupt"],
"cli_reorder": df_scenariofile.iloc[i]["cli_reorder"],
"cli_rate": df_scenariofile.iloc[i]["cli_rate"],
"error_count": error_count,
"error_rate": error_count / len(measurements),
"measurements": measurements,
"mean": np.mean(measurements),
"std": np.std(measurements),
"cv": np.std(measurements) / np.mean(measurements),
"median": np.median(measurements),
"qtl_01": np.quantile(measurements, 0.01),
"qtl_05": np.quantile(measurements, 0.05),
"qtl_25": np.quantile(measurements, 0.25),
"qtl_75": np.quantile(measurements, 0.75),
"qtl_95": np.quantile(measurements, 0.95),
"qtl_99": np.quantile(measurements, 0.99),
"iqr": scipy.stats.iqr(measurements),
"riqr": scipy.stats.iqr(measurements) / np.median(measurements),
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
"skewness": scipy.stats.skew(measurements),
"kurtosis": scipy.stats.kurtosis(measurements),
}
dtypes = {
"scenario": "category",
"protocol": "category",
"sec_level": "category",
"kem_alg": "category",
}
data = data.astype(dtypes)
categories = [
"secp256r1",
"secp384r1",
"secp521r1",
"x25519",
"x448",
"mlkem512",
"p256_mlkem512",
"x25519_mlkem512",
"mlkem768",
"p384_mlkem768",
"x448_mlkem768",
"x25519_mlkem768",
"p256_mlkem768",
"mlkem1024",
"p521_mlkem1024",
"p384_mlkem1024",
"bikel1",
"p256_bikel1",
"x25519_bikel1",
"bikel3",
"p384_bikel3",
"x448_bikel3",
"bikel5",
"p521_bikel5",
"hqc128",
"p256_hqc128",
"x25519_hqc128",
"hqc192",
"p384_hqc192",
"x448_hqc192",
"hqc256",
"p521_hqc256",
"frodo640aes",
"p256_frodo640aes",
"x25519_frodo640aes",
"frodo640shake",
"p256_frodo640shake",
"x25519_frodo640shake",
"frodo976aes",
"p384_frodo976aes",
"x448_frodo976aes",
"frodo976shake",
"p384_frodo976shake",
"x448_frodo976shake",
"frodo1344aes",
"p521_frodo1344aes",
"frodo1344shake",
"p521_frodo1344shake",
]
data["kem_alg"] = pd.Categorical(
data["kem_alg"], categories=categories, ordered=True
)
print(data.head())
print(data.describe())
print(data.info())
print()
print("Scenarios read:", data["scenario"].unique())
os.makedirs(FEATHERS_DIR, mode=0o777, exist_ok=True)
data.to_feather(f"{FEATHERS_DIR}/data.feather")
print("Data written to feather file")
return data
def filter_data(
data,
scenario: str | None = None,
protocol: str | None = None,
sec_level: str | list[str] | None = None,
kem_alg: str | None = None,
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
):
filtered_data = data
# print(filtered_data["kem_alg"] == "x25519") # is a boolean series
if scenario is not None:
filtered_data = filtered_data[filtered_data["scenario"] == scenario]
if protocol is not None:
filtered_data = filtered_data[filtered_data["protocol"] == protocol]
if sec_level is not None:
if type(sec_level) == list:
filtered_data = filtered_data[filtered_data["sec_level"].isin(sec_level)]
else:
filtered_data = filtered_data[filtered_data["sec_level"] == sec_level]
if kem_alg is not None:
filtered_data = filtered_data[filtered_data["kem_alg"] == kem_alg]
def drop_columns_with_only_zero_values(data):
# this complicated way is necessary, because measurements is a list of values
filtered_data_without_measurements = data.drop(columns=["measurements"])
zero_columns_to_drop = (filtered_data_without_measurements != 0).any()
zero_columns_to_drop = [
col
for col in filtered_data_without_measurements.columns
if not zero_columns_to_drop[col]
]
return data.drop(columns=zero_columns_to_drop)
if drop_zero_columns and "measurements" in data.columns:
filtered_data = drop_columns_with_only_zero_values(filtered_data)
# if drop_zero_columns:
# filtered_data = drop_columns_with_only_zero_values(filtered_data)
# print(filtered_data["measurements"].head())
# print(filtered_data)
return filtered_data
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
def get_x_axis_column_name(scenario: str) -> str:
match scenario:
case "duplicate":
return "srv_duplicate"
case "packetloss":
return "srv_pkt_loss"
case "delay":
return "srv_delay"
case "jitter_delay20ms":
return "srv_jitter"
case "corrupt":
return "srv_corrupt"
case "reorder":
return "srv_reorder"
case "rate_both":
return "srv_rate"
case "rate_client":
return "cli_rate"
case "rate_server":
return "srv_rate"
case "static":
assert False, "static scenario has no x-axis"
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def get_x_axis(scenario, data, length):
match scenario:
case "duplicate":
return data["srv_duplicate"]
case "packetloss":
return data["srv_pkt_loss"]
case "delay":
return data["srv_delay"]
case "jitter_delay20ms":
return data["srv_jitter"]
case "corrupt":
return data["srv_corrupt"]
case "reorder":
return data["srv_reorder"]
case "rate_both":
return data["srv_rate"]
case "rate_client":
return data["cli_rate"]
case "rate_server":
return data["srv_rate"]
case "static":
case _:
print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
sys.exit(1)
def map_security_level_hybrid_together(sec_level: str):
match sec_level:
case "secLevel1":
return ["secLevel1", "secLevel1_hybrid"]
case "secLevel3":
return ["secLevel3", "secLevel3_hybrid"]
case "secLevel5":
return ["secLevel5", "secLevel5_hybrid"]
case "miscLevel":
return "miscLevel"
case _:
return None
def get_color_and_mode(kem_alg: str, combined_with_hybrids: bool = False):
# NOTE maybe just use hle colors directly from the start
primary_mode = "-"
secondary_mode = "--" if combined_with_hybrids else "-"
tertiary_mode = ":" if combined_with_hybrids else "--"
secondary_lightness_factor = 0.9 if combined_with_hybrids else 1
tertiary_lightness_factor = 0.8 if combined_with_hybrids else 0.9
a = 0.8 if combined_with_hybrids else 1
no_algos = 8
match kem_alg:
case "secp256r1":
return cmap(0 / no_algos), primary_mode
case "secp384r1":
return cmap(0.3 / no_algos), primary_mode
case "secp521r1":
return cmap(0.6 / no_algos), primary_mode
case "x25519":
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
case "mlkem512":
return cmap(1 / no_algos), primary_mode
case "p256_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem512":
return (
transform_cmap_color(
cmap(1 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem768":
return cmap(1.3 / no_algos), primary_mode
case "p384_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_mlkem768":
return (
transform_cmap_color(
cmap(1.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "mlkem1024":
return cmap(1.6 / no_algos), primary_mode
case "p521_mlkem1024":
return (
transform_cmap_color(
cmap(1.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "bikel1":
return cmap(2 / no_algos), primary_mode
case "p256_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_bikel1":
return (
transform_cmap_color(
cmap(2 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel3":
return cmap(2.3 / no_algos), primary_mode
case "p384_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_bikel3":
return (
transform_cmap_color(
cmap(2.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "bikel5":
return cmap(2.6 / no_algos), primary_mode
case "p521_bikel5":
return (
transform_cmap_color(
cmap(2.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "hqc128":
return cmap(4 / no_algos), primary_mode
case "p256_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_hqc128":
return (
transform_cmap_color(
cmap(4 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc192":
return cmap(4.3 / no_algos), primary_mode
case "p384_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_hqc192":
return (
transform_cmap_color(
cmap(4.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "hqc256":
return cmap(4.6 / no_algos), primary_mode
case "p521_hqc256":
return (
transform_cmap_color(
cmap(4.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo640aes":
return cmap(5 / no_algos), primary_mode
case "p256_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640aes":
return (
transform_cmap_color(
cmap(5 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo640shake":
return cmap(6 / no_algos), primary_mode
case "p256_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_frodo640shake":
return (
transform_cmap_color(
cmap(6 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976aes":
return cmap(5.3 / no_algos), primary_mode
case "p384_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976aes":
return (
transform_cmap_color(
cmap(5.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo976shake":
return cmap(6.3 / no_algos), primary_mode
case "p384_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x448_frodo976shake":
return (
transform_cmap_color(
cmap(6.3 / no_algos),
alpha_factor=a,
lightness_factor=tertiary_lightness_factor,
),
tertiary_mode,
)
case "frodo1344aes":
return cmap(5.6 / no_algos), primary_mode
case "p521_frodo1344aes":
return (
transform_cmap_color(
cmap(5.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "frodo1344shake":
return cmap(6.6 / no_algos), primary_mode
case "p521_frodo1344shake":
return (
transform_cmap_color(
cmap(6.6 / no_algos),
alpha_factor=a,
lightness_factor=secondary_lightness_factor,
),
secondary_mode,
)
case "x25519_mlkem768":
return (
transform_cmap_color(cmap(7 / no_algos), alpha_factor=a),
primary_mode,
)
case "p256_mlkem768":
return (
transform_cmap_color(
cmap(7.5 / no_algos), lightness_factor=secondary_lightness_factor
),
primary_mode,
)
case "p384_mlkem1024":
return (
transform_cmap_color(
cmap(7.99 / no_algos), lightness_factor=tertiary_lightness_factor
),
primary_mode,
)
case _:
print(f"NO COLOR MATCH FOUND FOR {kem_alg}", file=sys.stderr)
sys.exit(1)
def get_color_and_mode_for_protocol(protocol: str):
primary_mode = "-"
no_protocols = 6
match protocol:
case "quic":
return cmap(0 / no_protocols), primary_mode
case "tlstcp":
return cmap(1 / no_protocols), primary_mode
case "cquiche-reno":
return cmap(2 / no_protocols), primary_mode
case "cquiche-cubic":
return cmap(3 / no_protocols), primary_mode
case "cquiche-bbr":
return cmap(4 / no_protocols), primary_mode
case "cquiche-bbr2":
return cmap(5 / no_protocols), primary_mode
case _:
print(f"NO COLOR MATCH FOUND FOR Protocol {protocol}", file=sys.stderr)
sys.exit(1)
def transform_cmap_color(
color, hue_shift=0, saturation_factor=1, lightness_factor=1, alpha_factor=1
):
def value_between(minimum, value, maximum):
return max(minimum, min(value, maximum))
r, g, b, a = color
h, l, s = colorsys.rgb_to_hls(r, g, b)
h += hue_shift
l *= lightness_factor
l = value_between(0, l, 1)
s *= saturation_factor
s = value_between(0, s, 1)
r, g, b = colorsys.hls_to_rgb(h, l, s)
a *= alpha_factor
return r, g, b, a
# plots lines of different statistical values
def plot_lines(data):
def plot_lines_for_sec_level(
data, line_type="median", combined_with_hybrids: bool = False
):
f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/combined-with-hybrids",
mode=0o777,
exist_ok=True,
)
# get all combination of scenario, protocol, sec_level
unique_combinations = data[
["scenario", "protocol", "sec_level"]
].drop_duplicates()
# print(len(unique_combinations))
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
sec_level = row["sec_level"]
if combined_with_hybrids:
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=sec_level,
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
plt.figure()
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values()
):
# color = cmap(idx / len(filtered_data["kem_alg"].unique()))
color, mode = get_color_and_mode(
kem_alg, combined_with_hybrids=combined_with_hybrids
)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
# print(filtered_data_single_kem_alg)
y = filtered_data_single_kem_alg[line_type]
x = get_x_axis(row["scenario"], filtered_data_single_kem_alg, len(y))
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
# )
# print(f"x: {x}")
# print(f"y: {y}")
# plt.fill_between(x, filtered_data_single_kem_alg["qtl_25"], filtered_data_single_kem_alg["qtl_75"], alpha=0.2, color=color)
plt.plot(x, y, linestyle=mode, marker=".", color=color, label=kem_alg)
plt.ylim(bottom=0)
plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
# plt.title(
# f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
# )
plt.grid()
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
if combined_with_hybrids:
subdir = "combined-with-hybrids/"
appendix = "-combined-with-hybrids"
plt.savefig(
f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/{subdir}{line_type}-{row['scenario']}-{row['protocol']}-{row['sec_level']}{appendix}.pdf"
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
def plot_lines_for_tcp_and_cquiche_cubic_for_a_sec_level(data, line_type="median"):
os.makedirs(
f"{PLOTS_DIR}/lines/between-cquiche-cubic-and-tlstcp/{line_type}s-of-sec-level/",
mode=0o777,
exist_ok=True,
)
# get all combination of scenario, protocol, sec_level
unique_combinations = data[["scenario", "sec_level"]].drop_duplicates()
# print(len(unique_combinations))
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
sec_level = row["sec_level"]
filtered_data = filter_data(
data,
scenario=row["scenario"],
sec_level=sec_level,
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
plt.figure()
for protocol in ["tlstcp", "cquiche-cubic"]:
inner_filtered_data = filter_data(filtered_data, protocol=protocol)
for idx, kem_alg in enumerate(
inner_filtered_data["kem_alg"].unique().sort_values()
):
# color = cmap(idx / len(inner_filtered_data["kem_alg"].unique()))
color, mode = get_color_and_mode(kem_alg)
if protocol == "tlstcp":
mode = "--"
inner_filtered_data_single_kem_alg = filter_data(
inner_filtered_data, kem_alg=kem_alg
)
# print(inner_filtered_data_single_kem_alg)
y = inner_filtered_data_single_kem_alg[line_type]
x = get_x_axis(
row["scenario"], inner_filtered_data_single_kem_alg, len(y)
)
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
# )
# print(f"x: {x}")
# print(f"y: {y}")
prefix = "cquiche-cubic-"
if protocol == "tlstcp":
prefix = "tlstcp-"
plt.plot(
x,
y,
linestyle=mode,
marker=".",
color=color,
label=f"{prefix}{kem_alg}",
)
plt.ylim(bottom=0)
plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
# plt.title(
# f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
# )
plt.grid()
plt.legend(
bbox_to_anchor=(0.5, 1),
loc="lower center",
ncol=3,
fontsize="small",
)
plt.tight_layout()
plt.savefig(
f"{PLOTS_DIR}/lines/between-cquiche-cubic-and-tlstcp/{line_type}s-of-sec-level/{line_type}-{row['scenario']}-{row['sec_level']}.pdf"
)
plt.close()
def plot_lines_for_comparisons_between_protocols(data, line_type="median"):
os.makedirs(
f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s",
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
mode=0o777,
exist_ok=True,
)
# sec_level is only needed for the filename
unique_combinations = data[
["scenario", "kem_alg", "sec_level"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
kem_alg=row["kem_alg"],
)
plt.figure()
for idx, protocol in enumerate(
filtered_data["protocol"].unique().sort_values()
):
color, mode = get_color_and_mode_for_protocol(protocol)
filtered_data_single_protocol = filter_data(
filtered_data, protocol=protocol
)
y = filtered_data_single_protocol[line_type]
x = get_x_axis(row["scenario"], filtered_data_single_protocol, len(y))
plt.plot(x, y, linestyle=mode, marker=".", color=color, label=protocol)
plt.ylim(bottom=0)
plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.grid()
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
)
plt.tight_layout()
subdir = ""
appendix = ""
plt.savefig(
f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s/{subdir}{line_type}-{row['scenario']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
)
plt.close()
def plot_qtls_of_single_algorithm(data):
print("plot_qtls_of_single_algorithms")
f"{PLOTS_DIR}/lines/quantiles-of-single-algorithm",
mode=0o777,
exist_ok=True,
# get all combination of scenario, protocol, sec_level, kem_alg
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}")
plt.figure()
# plt.fill_between(
# x, filtered_data["qtl_25"], filtered_data["qtl_75"], alpha=0.5
# )
QUANTILES = [1, 5, 10, 25, 40, 50, 60, 75, 90, 95, 99]
color_map = plt.get_cmap("viridis")
measurements = np.array(filtered_data["measurements"])
for qtl in QUANTILES:
color = color_map(1 - (qtl / 100))
y = [np.quantile(x, qtl / 100) for x in measurements]
x = get_x_axis(row["scenario"], filtered_data, len(y))
plt.plot(
x, y, linestyle="-", marker=".", color=color, label=f"{qtl} qtl"
)
plt.ylim(bottom=0)
plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.grid()
plt.legend(
bbox_to_anchor=(0.5, 1), loc="lower center", ncol=6, fontsize="small"
)
plt.tight_layout()
# plt.title(
# f"Median of {row['scenario']} in {row['protocol']} in {row['sec_level']} with {row['kem_alg']}"
# )
plt.savefig(
f"{PLOTS_DIR}/lines/quantiles-of-single-algorithm/quantiles-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf"
)
plt.close()
"qtl_25",
"qtl_75",
"qtl_95",
"qtl_99",
"iqr",
"riqr",
"skewness",
"kurtosis",
]
for statistical_measurement in statistical_measurements:
print(f"Generating graphs for {statistical_measurement}")
plot_lines_for_sec_level(
data, line_type=statistical_measurement, combined_with_hybrids=False
)
plot_lines_for_sec_level(
data, line_type=statistical_measurement, combined_with_hybrids=True
)
plot_lines_for_comparisons_between_protocols(
data, line_type=statistical_measurement
)
plot_lines_for_tcp_and_cquiche_cubic_for_a_sec_level(
data, line_type=statistical_measurement
)
plot_qtls_of_single_algorithm(data)
# plots distributions of the individual data points
def plot_distributions(data):
os.makedirs(
f"{PLOTS_DIR}/distributions/single",
mode=0o777,
exist_ok=True,
)
def plot_multiple_violin_plots(data, filtered: bool = False):
os.makedirs(
f"{PLOTS_DIR}/distributions/multiple-violin-plots/filtered/",
mode=0o777,
exist_ok=True,
)
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
if row["scenario"] == "static":
continue
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}, len: {len(filtered_data)}"
# )
# return the data with removed rows and the ticks for the x-axis
scenario = data.iloc[0]["scenario"]
scenario_column_name = get_x_axis_column_name(scenario)
match scenario:
case "packetloss" | "duplicate" | "reorder" | "corrupt":
# return data where src_packetloss is 0, 4, 8, 12, 16 or 20
ldata = data.query(f"{scenario_column_name} % 4 == 0")
case "jitter_delay20ms":
ldata = data[
data[scenario_column_name].isin([0, 3, 7, 12, 15, 20])
]
case "rate_both" | "rate_client" | "rate_server":
ldata = data[
data[scenario_column_name].isin(
[
0.1,
5,
10,
100,
]
)
]
case "delay":
ldata = data[
data[scenario_column_name].isin([1, 20, 40, 80, 100, 190])
]
print("No case for this scenario:", scenario)
ldata = pd.concat(
[
data.iloc[[0]],
data.iloc[3:-4:4],
data.iloc[[-1]],
]
)
return ldata, ldata[scenario_column_name].to_list()
filtered_data, tick_values = remove_rows_of_data(filtered_data)
# print(filtered_data)
# if filtered_data.iloc[0]["scenario"] == "jitter_delay20ms":
plt.figure()
x = get_x_axis(row["scenario"], filtered_data, len(filtered_data))
x = x.to_list()
# print(x)
vplots = plt.violinplot(
filtered_data["measurements"],
positions=x,
showmedians=False,
showextrema=False,
for pc in vplots["bodies"]:
pc.set_facecolor("blue")
pc.set_edgecolor("darkblue")
# make the median line transparent
# for pc in plt.gca().collections:
# pc.set_alpha(0.5)
plt.ylim(bottom=0)
plt.ylim(bottom=0, top=1.5 * filtered_data["qtl_95"].max())
plt.xticks(tick_values)
plt.xlim(left=-1.5)
plt.xlabel(row["scenario"])
plt.ylabel(f"Time-to-first-byte (ms)")
plt.grid()
subdir = "filtered/" if filtered else ""
appendix = "-filtered" if filtered else ""
plt.savefig(
f"{PLOTS_DIR}/distributions/multiple-violin-plots/{subdir}multiple-violin-plots-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
)
plt.close()
def plot_single_violin_plot(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
# print(
# f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}"
# )
for _, row in filtered_data.iterrows():
if row["scenario"] == "static":
continue
value = get_x_axis(row["scenario"], row, 1)
# print(value)
plt.figure()
plt.violinplot(row["measurements"], showmedians=True)
# plt.ylim(bottom=0)
# plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.xlabel("Dichte")
plt.ylabel(f"Time-to-first-byte (ms)")
plt.grid()
plt.savefig(
f"{PLOTS_DIR}/distributions/single/single-violin-plot-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}-{value}.pdf"
)
plt.close()
# return
Bartolomeo Berend Müller
committed
def plot_cdf_of_sec_level(data, cutoff=None):
subdir_string = ""
graph_name_extension = ""
if cutoff is not None:
subdir_string = f"cutoff-at-{cutoff}/"
graph_name_extension = f"-cutoff-at-{cutoff}"
Bartolomeo Berend Müller
committed
Bartolomeo Berend Müller
committed
f"{PLOTS_DIR}/distributions/cdf/per-sec-level/{subdir_string}",
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
mode=0o777,
exist_ok=True,
)
unique_combinations = data[
["scenario", "protocol", "sec_level"]
].drop_duplicates()
# filter out every scenario that is not packetloss or corrupt
unique_combinations = unique_combinations[
unique_combinations["scenario"].isin(["packetloss", "corrupt"])
]
# print(unique_combinations)
for _, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario=row["scenario"],
protocol=row["protocol"],
sec_level=row["sec_level"],
)
# print(filtered_data)
def get_row_name_for_scenario(scenario):
match scenario:
case "packetloss":
return "srv_pkt_loss"
case "corrupt":
return "srv_corrupt"
case _:
print("No case for this scenario:", row["scenario"])
exit(1)
row_name = get_row_name_for_scenario(row["scenario"])
scenario_param_values = filtered_data[row_name].unique()
# print(scenario_param_values)
for param_value in scenario_param_values:
filtered_data_single_param_value = filtered_data.query(
f"{row_name} == {param_value}"
)
# print(filtered_data_single_param_value)
plt.figure()
for _, row in filtered_data_single_param_value.iterrows():
color, mode = get_color_and_mode(
row["kem_alg"], combined_with_hybrids=False
)
plt.ecdf(
row["measurements"],
label=row["kem_alg"],
color=color,
linestyle=mode,
)
# plt.ylim(bottom=0)
Bartolomeo Berend Müller
committed
if cutoff is not None:
plt.xlim(0, cutoff)
# plt.xlim(left=0, right=x.max() + (x.max() / 50))
plt.ylabel("Wahrscheinlichkeit")
plt.xlabel(f"Time-to-first-byte (ms)")
plt.grid()
plt.legend(
bbox_to_anchor=(0.5, 1),
loc="lower center",
ncol=3,
fontsize="small",
)
plt.tight_layout()
Bartolomeo Berend Müller
committed
f"{PLOTS_DIR}/distributions/cdf/per-sec-level/{subdir_string}cdf-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{param_value}{graph_name_extension}.pdf"
)
plt.close()
plot_multiple_violin_plots(data, filtered=False)
plot_multiple_violin_plots(data, filtered=True)
# plot_single_violin_plot(data) # takes an age
Bartolomeo Berend Müller
committed
plot_cdf_of_sec_level(data, cutoff=None)
plot_cdf_of_sec_level(data, cutoff=2000)
# TODO make a violinplot/eventplot for many algos in static scenario
def plot_static_data(data):
os.makedirs(f"{PLOTS_DIR}/static/single", mode=0o777, exist_ok=True)
def plot_static_data_for_multiple_algorithms(data):
unique_combinations = data[["protocol", "sec_level"]].drop_duplicates()
for idx, row in unique_combinations.iterrows():
sec_level = map_security_level_hybrid_together(row["sec_level"])
if sec_level is None:
continue
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=sec_level,
)
iqrs = pd.DataFrame()
# plt.figure(figsize=(6, 6))
plt.figure()
kem_algs = []
for idx, kem_alg in enumerate(
filtered_data["kem_alg"].unique().sort_values(),
):
kem_algs.append(kem_alg)
filtered_data_single_kem_alg = filter_data(
filtered_data, kem_alg=kem_alg
)
plt.boxplot(
filtered_data_single_kem_alg["median"],
positions=[idx],
widths=0.6,
)
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
iqrs = pd.concat(
[
iqrs,
pd.DataFrame(
{
"kem_alg": [kem_alg],
"iqr": [
scipy.stats.iqr(
filtered_data_single_kem_alg["median"]
)
],
}
),
],
ignore_index=True,
)
# print(
# f"IQR for {kem_alg}: {scipy.stats.iqr(filtered_data_single_kem_alg['median'])}"
# )
# Get the median irqs for all algorithms
# print(row["protocol"], row["sec_level"])
# print(iqrs)
# print(iqrs["iqr"].describe())
# print("Median:", iqrs["iqr"].median())
# print("IQR:", scipy.stats.iqr(iqrs["iqr"]))
# print()
plt.xticks(
range(len(filtered_data["kem_alg"].unique())),
kem_algs,
rotation=45,
ha="right",
)
plt.xlabel("KEM Algorithms")
plt.ylabel("Time-to-first-byte (ms)")
plt.grid()
sec_level_string = (
sec_level if type(sec_level) == str else "-".join(sec_level)
)
plt.tight_layout()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
f"boxplots-of-medians-for-static-{row['protocol']}-{sec_level_string}.pdf",
)
)
plt.close()
def plot_static_data_for_single_algorithms(data):
unique_combinations = data[
["scenario", "protocol", "sec_level", "kem_alg"]
].drop_duplicates()
unique_combinations = filter_data(unique_combinations, scenario="static")
for idx, row in unique_combinations.iterrows():
filtered_data = filter_data(
data,
scenario="static",
protocol=row["protocol"],
sec_level=row["sec_level"],
kem_alg=row["kem_alg"],
)
def boxplot_of_medians_for_configuration(filtered_data, row):
plt.figure()
plt.boxplot(filtered_data["median"])
plt.grid()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"boxplot-of-medians-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
plt.close()
# why the density of violin plot and kde plot differ, while using the same scott kde just sideways:
# Dove deep into the implementation from matplotlib and scipy, and they seem to calculate scotts factor in the same way, so dunno
def condensed_violin_plot_for_configuration(filtered_data, row):
# for multiple runs of the same static scenario, data taken together
measurements_flattend = filtered_data["measurements"].explode().tolist()
# print(filtered_data["measurements"].explode())
# print(len(measurements_flattend))
plt.figure()
plt.violinplot(measurements_flattend, showmedians=True)
plt.ylabel("Time-to-first-byte (ms)")
plt.xlabel("Dichte")
plt.grid()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-violin-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
plt.close()
def condensed_histogram_plot_for_configuration(filtered_data, row):
measurements_flattend = filtered_data["measurements"].explode().tolist()
plt.figure()
plt.hist(measurements_flattend, bins=100, density=True)
plt.xlabel("Time-to-first-byte (ms)")
plt.ylabel("Dichte")
plt.grid()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-histogram-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
)
plt.close()
def condensed_kernel_density_estimate_plot_for_configuration(
filtered_data, row
):
measurements_flattend = filtered_data["measurements"].explode().tolist()
plt.figure()
kde = scipy.stats.gaussian_kde(measurements_flattend)
xmin = min(measurements_flattend) - 0.2
xmax = max(measurements_flattend) + 0.1
x = np.linspace(
xmin,
xmax,
1000,
kde_values = kde(x)
plt.plot(x, kde_values)
plt.fill_between(x, kde_values, alpha=0.5)
plt.xlabel("Time-to-first-byte (ms)")
plt.ylabel("Dichte")
plt.xlim([xmin, xmax])
plt.ylim([0, max(kde_values) + 0.1])
plt.grid()
plt.savefig(
os.path.join(
PLOTS_DIR,
"static",
"single",
f"condensed-kde-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
)
)
plt.close()
boxplot_of_medians_for_configuration(filtered_data, row)
condensed_violin_plot_for_configuration(filtered_data, row)
condensed_histogram_plot_for_configuration(filtered_data, row)
condensed_kernel_density_estimate_plot_for_configuration(filtered_data, row)
# return
plot_static_data_for_multiple_algorithms(data)
plot_static_data_for_single_algorithms(data)
def plot_general_plots():
def get_color_for_kem_algo(kem_algo):
if "mlkem" in kem_algo:
return "blue"
if "bikel" in kem_algo:
return "red"
if "hqc" in kem_algo:
return "green"
if "frodo" in kem_algo:
return "orange"
return "grey"
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
def plot_oqs_performance():
def plot_liboqs_performance(liboqs_speed_data):
os.makedirs(
"plots/general/oqs-performance/liboqs", mode=0o777, exist_ok=True
)
# print(liboqs_speed_data.columns)
# print(
# liboqs_speed_data[
# [
# "algorithm",
# "keygen_mean_time_us",
# "encaps_mean_time_us",
# "decaps_mean_time_us",
# "total_liboqs_performance_time_us",
# ]
# ]
# )
# print(
# liboqs_speed_data[
# [
# "algorithm",
# "total_liboqs_performance_cpu_cycles",
# "total_expected_cycles",
# "total_liboqs_performance_ratio",
# ]
# ]
# )
# figure with all algorithms with times for each operation
plt.figure()
fig, ax = plt.subplots()
bar_width = 0.5
index = np.arange(len(liboqs_speed_data))
color_map = plt.get_cmap("viridis")
bar1 = ax.bar(
index,
liboqs_speed_data["keygen_mean_time_us"],
bar_width,
label="Keygen",
color=color_map(0.1),
)
bar2 = ax.bar(
index,
liboqs_speed_data["encaps_mean_time_us"],
bar_width,
bottom=liboqs_speed_data["keygen_mean_time_us"],
label="Encaps",
color=color_map(0.4),
)
bar3 = ax.bar(
index,
liboqs_speed_data["decaps_mean_time_us"],
bar_width,
bottom=liboqs_speed_data["keygen_mean_time_us"]
+ liboqs_speed_data["encaps_mean_time_us"],
label="Decaps",
color=color_map(0.7),
)
values = liboqs_speed_data["total_liboqs_performance_time_us"]
for idx, rect in enumerate(bar3):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
values.iloc[idx],
f"{values.iloc[idx]:.1f}",
ha="center",
va="bottom",
fontsize=8,
)
# ax.set_xlabel("Algorithm")
ax.set_ylabel("Time (µs)")
# ax.set_title("Keygen, Encaps, and Decaps Time by Algorithm")
ax.set_xticks(index)
ax.set_xticklabels(liboqs_speed_data["algorithm"], rotation=60, ha="right")
ax.legend()
ax.grid()
ax.set_axisbelow(True)
ax.set_ylim(
0, liboqs_speed_data["total_liboqs_performance_time_us"].max() * 1.1
)
plt.tight_layout()
plt.savefig(
"plots/general/oqs-performance/liboqs/time-for-operations-for-each-algo.pdf"
)
plt.close()
# figure with all algorithms with cycles for keygen, encaps and decaps, next to it the expected cycles for each operation
liboqs_speed_data_bikel5_changed = liboqs_speed_data.copy()
liboqs_speed_data_bikel5_changed.loc[
liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
"keygen_expected_cycles",
] = 0
liboqs_speed_data_bikel5_changed.loc[
liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
"encaps_expected_cycles",
] = 0
liboqs_speed_data_bikel5_changed.loc[
liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
"decaps_expected_cycles",
] = 0
plt.figure()
fig, ax = plt.subplots()
bar_width = 0.35
index = np.arange(len(liboqs_speed_data_bikel5_changed))
# bar1 is for measured cycles, bar2 is for expected cycles
bar11 = ax.bar(
index - 0.01 - bar_width / 2,
liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"],
bar_width,
label="Keygen",
color=color_map(0.1),
)
bar12 = ax.bar(
index - 0.01 - bar_width / 2,
liboqs_speed_data_bikel5_changed["encaps_mean_cpu_cycles"],
bar_width,
bottom=liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"],
label="Encaps",
color=color_map(0.4),
)
bar13 = ax.bar(
index - 0.01 - bar_width / 2,
liboqs_speed_data_bikel5_changed["decaps_mean_cpu_cycles"],
bar_width,
bottom=liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"]
+ liboqs_speed_data_bikel5_changed["encaps_mean_cpu_cycles"],
label="Decaps",
color=color_map(0.7),
)
bar21 = ax.bar(
index + 0.01 + bar_width / 2,
liboqs_speed_data_bikel5_changed["keygen_expected_cycles"],
bar_width,
color=color_map(0.1),
)
bar22 = ax.bar(
index + 0.01 + bar_width / 2,
liboqs_speed_data_bikel5_changed["encaps_expected_cycles"],
bar_width,
bottom=liboqs_speed_data_bikel5_changed["keygen_expected_cycles"],
color=color_map(0.4),
)
bar23 = ax.bar(
index + 0.01 + bar_width / 2,
liboqs_speed_data_bikel5_changed["decaps_expected_cycles"],
bar_width,
bottom=liboqs_speed_data_bikel5_changed["keygen_expected_cycles"]
+ liboqs_speed_data_bikel5_changed["encaps_expected_cycles"],
color=color_map(0.7),
)
values = liboqs_speed_data_bikel5_changed[
"total_liboqs_performance_cpu_cycles"
]
for idx, rect in enumerate(bar13):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
values.iloc[idx] + 100000,
f"{int(values.iloc[idx])}",
ha="center",
va="bottom",
fontsize=8,
rotation=90,
)
values = liboqs_speed_data_bikel5_changed["total_expected_cycles"]
for idx, rect in enumerate(bar23):
if "BIKE-L5" == liboqs_speed_data_bikel5_changed["algorithm"].iloc[idx]:
continue
ax.text(
rect.get_x() + rect.get_width() / 2.0,
values.iloc[idx] + 100000,
f"{int(values.iloc[idx])}",
ha="center",
va="bottom",
fontsize=8,
rotation=90,
)
ax.set_ylabel("CPU Zyklen in Millionen")
ax.yaxis.set_major_formatter(
ticker.FuncFormatter(lambda x, _: f"{int(x/1_000_000)}")
)
ax.set_xticks(index)
ax.set_xticklabels(
liboqs_speed_data_bikel5_changed["algorithm"], rotation=60, ha="right"
)
ax.legend()
ax.grid()
ax.set_axisbelow(True)
ax.set_ylim(
0,
max(
liboqs_speed_data_bikel5_changed[
"total_liboqs_performance_cpu_cycles"
].max(),
liboqs_speed_data_bikel5_changed["total_expected_cycles"].max(),
)
* 1.3,
)
plt.tight_layout()
plt.savefig(
"plots/general/oqs-performance/liboqs/cycles-for-operations-for-each-algo-next-to-expected-cycles.pdf"
)
plt.close()
def plot_openssl_performance(openssl_speed_data, secLevel=""):
os.makedirs(
"plots/general/oqs-performance/openssl", mode=0o777, exist_ok=True
)
# print(openssl_speed_data.columns)
color_map = plt.get_cmap("inferno")
plt.figure()
fig, ax = plt.subplots()
bar_width = 0.35
index = np.arange(len(openssl_speed_data))
# bar1 is for measured cycles, bar2 is for expected cycles
bar11 = ax.bar(
index - 0.01 - bar_width / 2,
openssl_speed_data["keygen_mean_time_s"],
bar_width,
label="Keygen",
color=color_map(0.1),
)
bar12 = ax.bar(
index - 0.01 - bar_width / 2,
openssl_speed_data["encaps_mean_time_s"],
bar_width,
bottom=openssl_speed_data["keygen_mean_time_s"],
label="Encaps",
color=color_map(0.4),
)
bar13 = ax.bar(
index - 0.01 - bar_width / 2,
openssl_speed_data["decaps_mean_time_s"],
bar_width,
bottom=openssl_speed_data["keygen_mean_time_s"]
+ openssl_speed_data["encaps_mean_time_s"],
label="Decaps",
color=color_map(0.7),
)
bar21 = ax.bar(
index + 0.01 + bar_width / 2,
openssl_speed_data["keygen_mean_time_s_expected"],
bar_width,
color=color_map(0.1),
)
bar22 = ax.bar(
index + 0.01 + bar_width / 2,
openssl_speed_data["encaps_mean_time_s_expected"],
bar_width,
bottom=openssl_speed_data["keygen_mean_time_s_expected"],
color=color_map(0.4),
)
bar23 = ax.bar(
index + 0.01 + bar_width / 2,
openssl_speed_data["decaps_mean_time_s_expected"],
bar_width,
bottom=openssl_speed_data["keygen_mean_time_s_expected"]
+ openssl_speed_data["encaps_mean_time_s_expected"],
color=color_map(0.7),
)
values = openssl_speed_data["total_actual_performance_time_s"]
for idx, rect in enumerate(bar13):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
values.iloc[idx] + 0.0001,
f"{values.iloc[idx]:.6f}",
ha="center",
va="bottom",
fontsize=8,
rotation=90,
)
values = openssl_speed_data["total_expected_performance_time_s"]
for idx, rect in enumerate(bar23):
ax.text(
rect.get_x() + rect.get_width() / 2.0,
values.iloc[idx] + 0.0001,
f"{values.iloc[idx]:.6f}",
ha="center",
va="bottom",
fontsize=8,
rotation=90,
)
ax.set_ylabel("Zeit in Sekunden")
ax.set_xticks(index)
ax.set_xticklabels(openssl_speed_data["algorithm"], rotation=60, ha="right")
ax.legend()
ax.grid()
ax.set_axisbelow(True)
ax.set_ylim(
0,
max(
openssl_speed_data["total_actual_performance_time_s"].max(),
openssl_speed_data["total_expected_performance_time_s"].max(),
)
* 1.3,
)
plt.tight_layout()
plt.savefig(
f"plots/general/oqs-performance/openssl/time-vs-expected-time{secLevel}.pdf"
)
plt.close()
liboqs_speed_data = pd.read_feather(f"saved/feathers/liboqs_speed_vm.feather")
liboqs_speed_data = (
performance_eval_of_oqs.concat_liboqs_speed_data_with_expected_values(
liboqs_speed_data
)
)
plot_liboqs_performance(liboqs_speed_data)
openssl_speed_data = pd.read_feather(f"saved/feathers/openssl_speed_vm.feather")
openssl_speed_data = performance_eval_of_oqs.analyze_openssl_speed_data(
openssl_speed_data
)
openssl_speed_data = openssl_speed_data.copy()
openssl_speed_data = openssl_speed_data[
openssl_speed_data["algorithm"].str.contains("_")
]
plot_openssl_performance(openssl_speed_data)
openssl_speed_data_secLevel1 = openssl_speed_data.copy()
openssl_speed_data_secLevel1 = openssl_speed_data_secLevel1[
openssl_speed_data_secLevel1["algorithm"].str.contains("p256_|x25519_")
]
plot_openssl_performance(openssl_speed_data_secLevel1, secLevel="-1")
openssl_speed_data_secLevel35 = openssl_speed_data.copy()
openssl_speed_data_secLevel35 = openssl_speed_data_secLevel35[
openssl_speed_data_secLevel35["algorithm"].str.contains("p384_|p521_|x448_")
]
plot_openssl_performance(openssl_speed_data_secLevel35, secLevel="-35")
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
def plot_send_bytes_against_kem_performance(df, with_hybrids: bool):
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
plt.figure()
# plt.scatter(df["bytes_sent"], df["performance_us"])
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["bytes_sent"],
subset["performance_us"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
plt.annotate(
txt,
(df["bytes_sent"].iloc[i], df["performance_us"].iloc[i]),
xytext=(0, -3),
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(30)
plt.ylim(30)
# custom tick stuff from claude
def custom_ticks(start, end):
ticks = [start] + [
10**i for i in range(int(np.log10(start)) + 1, int(np.log10(end)) + 1)
]
return ticks
x_ticks = custom_ticks(30, df["bytes_sent"].max())
y_ticks = custom_ticks(30, df["performance_us"].max())
plt.xticks(x_ticks, [f"{int(x):,}" for x in x_ticks])
plt.yticks(y_ticks, [f"{int(y):,}" for y in y_ticks])
plt.xlabel("Übertragungslänge (Bytes)")
plt.ylabel("Performanz der Operationen (µs)")
plt.grid()
"scatter-of-bytes-sent-against-kem-performance-with-hybrids.pdf"
else "scatter-of-bytes-sent-against-kem-performance.pdf"
)
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
# print(df)
def plot_public_key_length_against_ciphertext_length(
df, with_hybrids: bool, with_lines: bool
):
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
if not with_hybrids:
# filter out all hybrids, otherwise the plot is too cluttered
df = df[~df["kem_algo"].str.contains("_")]
# only keep one for frodo, since they are the same and remove the hash algo
df = df[~df["kem_algo"].str.contains("shake")]
df.loc[:, "kem_algo"] = df["kem_algo"].apply(lambda x: x.replace("aes", ""))
plt.figure()
for kem_algo in df["kem_algo"]:
subset = df[df["kem_algo"] == kem_algo]
color = get_color_for_kem_algo(kem_algo)
plt.scatter(
subset["length_public_key"],
subset["length_ciphertext"],
color=color,
label=kem_algo,
alpha=0.7,
)
for i, txt in enumerate(df["kem_algo"]):
annotate_offset = (0, -3)
if "bikel1" in txt:
annotate_offset = (0, 0)
if "mlkem1024" in txt:
annotate_offset = (0, -7)
plt.annotate(
txt,
(df["length_public_key"].iloc[i], df["length_ciphertext"].iloc[i]),
xytext=annotate_offset,
textcoords="offset points",
fontsize=8,
ha="center",
va="bottom",
)
if with_lines:
# reason for these magic numbers in obsidian note [[Packet lengths in QUIC over Ethernet]]
plt.axvline(x=940, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axhline(y=277, color="purple", linestyle="--", label="1 Paket Grenze")
plt.axvline(
x=940 + 1157, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.axhline(
y=277 + 1100, color="purple", linestyle="--", label="2 Paket Grenze"
)
plt.xscale("log")
plt.yscale("log")
plt.xlim(10)
plt.ylim(10)
plt.xlabel("Public Key Länge in Bytes")
plt.ylabel("Ciphertext Länge in Bytes")
plt.grid()
plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter())
plt.gca().yaxis.set_major_formatter(ticker.ScalarFormatter())
with_hybrids_string = "-with-hybrids" if with_hybrids else ""
with_lines_string = "-with-lines" if with_lines else ""
name = f"scatter-of-public-key-against-ciphertext-length{with_hybrids_string}{with_lines_string}.pdf"
plt.savefig(
os.path.join(PLOTS_DIR, "general", name),
dpi=300,
)
plt.close()
# This does not yet seem like a good idea
# TODO use the riqr to make some graphs
def plot_median_against_iqr(data):
plt.figure()
plt.hexbin(data["median"], data["iqr"], gridsize=50)
print(data["iqr"].describe())
print(data["median"].describe())
# get the line with the maximum median
max_median = data["median"].idxmax()
print(data.iloc[max_median])
plt.grid()
plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hexbin.pdf")
plt.close()
plt.figure()
plt.hist2d(data["median"], data["iqr"], bins=50)
plt.grid()
plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hist2d.pdf")
plt.close()
os.makedirs(f"{PLOTS_DIR}/general", mode=0o777, exist_ok=True)
df = helper_functions.prepare_kem_performance_data_for_plotting(
helper_functions.get_kem_performance_data()
)
plot_oqs_performance()
plot_send_bytes_against_kem_performance(df, with_hybrids=False)
plot_send_bytes_against_kem_performance(df, with_hybrids=True)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=False, with_lines=False
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=True
)
plot_public_key_length_against_ciphertext_length(
df, with_hybrids=True, with_lines=False
)