Skip to content
Snippets Groups Projects
generate_graphs.py 75.3 KiB
Newer Older
#!/usr/bin/env python

from functools import cmp_to_key
import colorsys
import os
import sys

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
import scipy

import helper_scripts.helper_functions as helper_functions
import helper_scripts.performance_eval_of_oqs as performance_eval_of_oqs
RESULTS_DIR = "saved/results-run-20250207-vm-p16"
FILTER_RESULTS = []
PLOTS_DIR = "plots"
FEATHERS_DIR = "feathers"

cmap = plt.cm.hsv
# cmap = plt.colormaps.get_cmap("nipy_spectral")
    # generally they both only seconds for graphs when not generating for single algorithms
    plot_general_plots()  # takes about 4 seconds
    plot_lines(data)  # takes about 1:50 min
    plot_static_data(data)  # takes about 4 min
    plot_distributions(data)


def load_data():
    if os.path.exists(f"{FEATHERS_DIR}/data.feather"):
        data = pd.read_feather(f"{FEATHERS_DIR}/data.feather")
    else:
        data = read_data_into_pandas()
    return data


# Reading in the data takes about 11 seconds per scenario
def read_data_into_pandas():
    data = pd.DataFrame(
        columns=[
            "scenario",
            "protocol",
            "sec_level",
            "kem_alg",
            "srv_pkt_loss",
            "srv_delay",
            "srv_jitter",
            "srv_duplicate",
            "srv_corrupt",
            "srv_reorder",
            "srv_rate",
            "cli_pkt_loss",
            "cli_delay",
            "cli_jitter",
            "cli_duplicate",
            "cli_corrupt",
            "cli_reorder",
            "cli_rate",
            "error_count",
            "error_rate",
            "qtl_01",
            "qtl_05",
            "skewness",
            "kurtosis",
        ]
    )

    def get_all_result_files():
        result_files = []
        for dirpath, _, filenames in os.walk(RESULTS_DIR):
            if filenames and not any(
                filter_value in dirpath for filter_value in FILTER_RESULTS
            ):
                for filename in filenames:
                    result_files.append(os.path.join(dirpath, filename))
        return result_files

    for csv_result_file_name in get_all_result_files():
        *_, scenario, protocol, sec_level, kem_alg = csv_result_file_name.split("/")
        kem_alg = kem_alg.split(".")[0]
        # print(f"csv_result_file_name: {csv_result_file_name}")
        result_file_data = pd.read_csv(csv_result_file_name, header=None)
        result_file_data = result_file_data.T
        df_scenariofile = pd.read_csv(f"testscenarios/scenario_{scenario}.csv")
        df_scenariofile = df_scenariofile.drop(
            df_scenariofile.columns[0], axis="columns"
        )

        assert len(result_file_data.columns) == len(df_scenariofile)
        for i in range(len(result_file_data.columns)):
            measurements_and_error_count = result_file_data.iloc[:, i].tolist()
            error_count = measurements_and_error_count[0]
            measurements = np.array(measurements_and_error_count[1:])
            data.loc[len(data)] = {
                "scenario": scenario,
                "protocol": protocol,
                "sec_level": sec_level,
                "kem_alg": kem_alg,
                "srv_pkt_loss": df_scenariofile.iloc[i]["srv_pkt_loss"],
                "srv_delay": df_scenariofile.iloc[i]["srv_delay"],
                "srv_jitter": df_scenariofile.iloc[i]["srv_jitter"],
                "srv_duplicate": df_scenariofile.iloc[i]["srv_duplicate"],
                "srv_corrupt": df_scenariofile.iloc[i]["srv_corrupt"],
                "srv_reorder": df_scenariofile.iloc[i]["srv_reorder"],
                "srv_rate": df_scenariofile.iloc[i]["srv_rate"],
                "cli_pkt_loss": df_scenariofile.iloc[i]["cli_pkt_loss"],
                "cli_delay": df_scenariofile.iloc[i]["cli_delay"],
                "cli_jitter": df_scenariofile.iloc[i]["cli_jitter"],
                "cli_duplicate": df_scenariofile.iloc[i]["cli_duplicate"],
                "cli_corrupt": df_scenariofile.iloc[i]["cli_corrupt"],
                "cli_reorder": df_scenariofile.iloc[i]["cli_reorder"],
                "cli_rate": df_scenariofile.iloc[i]["cli_rate"],
                "error_count": error_count,
                "error_rate": error_count / len(measurements),
                "measurements": measurements,
                "mean": np.mean(measurements),
                "std": np.std(measurements),
                "cv": np.std(measurements) / np.mean(measurements),
                "median": np.median(measurements),
                "qtl_01": np.quantile(measurements, 0.01),
                "qtl_05": np.quantile(measurements, 0.05),
                "qtl_25": np.quantile(measurements, 0.25),
                "qtl_75": np.quantile(measurements, 0.75),
                "qtl_95": np.quantile(measurements, 0.95),
                "qtl_99": np.quantile(measurements, 0.99),
                "iqr": scipy.stats.iqr(measurements),
                "riqr": scipy.stats.iqr(measurements) / np.median(measurements),
                "skewness": scipy.stats.skew(measurements),
                "kurtosis": scipy.stats.kurtosis(measurements),
            }

    dtypes = {
        "scenario": "category",
        "protocol": "category",
        "sec_level": "category",
        "kem_alg": "category",
    }
    data = data.astype(dtypes)
    categories = [
        "secp256r1",
        "secp384r1",
        "secp521r1",
        "x25519",
        "x448",
        "mlkem512",
        "p256_mlkem512",
        "x25519_mlkem512",
        "mlkem768",
        "p384_mlkem768",
        "x448_mlkem768",
        "x25519_mlkem768",
        "p256_mlkem768",
        "mlkem1024",
        "p521_mlkem1024",
        "p384_mlkem1024",
        "bikel1",
        "p256_bikel1",
        "x25519_bikel1",
        "bikel3",
        "p384_bikel3",
        "x448_bikel3",
        "bikel5",
        "p521_bikel5",
        "hqc128",
        "p256_hqc128",
        "x25519_hqc128",
        "hqc192",
        "p384_hqc192",
        "x448_hqc192",
        "hqc256",
        "p521_hqc256",
        "frodo640aes",
        "p256_frodo640aes",
        "x25519_frodo640aes",
        "frodo640shake",
        "p256_frodo640shake",
        "x25519_frodo640shake",
        "frodo976aes",
        "p384_frodo976aes",
        "x448_frodo976aes",
        "frodo976shake",
        "p384_frodo976shake",
        "x448_frodo976shake",
        "frodo1344aes",
        "p521_frodo1344aes",
        "frodo1344shake",
        "p521_frodo1344shake",
    ]
    data["kem_alg"] = pd.Categorical(
        data["kem_alg"], categories=categories, ordered=True
    )

    print(data.head())
    print(data.describe())
    print(data.info())
    print()
    print("Scenarios read:", data["scenario"].unique())

    os.makedirs(FEATHERS_DIR, mode=0o777, exist_ok=True)
    data.to_feather(f"{FEATHERS_DIR}/data.feather")
    print("Data written to feather file")
    return data


def filter_data(
    data,
    scenario: str | None = None,
    protocol: str | None = None,
    sec_level: str | list[str] | None = None,
    kem_alg: str | None = None,
    drop_zero_columns: bool = True,
):
    filtered_data = data
    # print(filtered_data["kem_alg"] == "x25519") # is a boolean series
    if scenario is not None:
        filtered_data = filtered_data[filtered_data["scenario"] == scenario]
    if protocol is not None:
        filtered_data = filtered_data[filtered_data["protocol"] == protocol]
    if sec_level is not None:
        if type(sec_level) == list:
            filtered_data = filtered_data[filtered_data["sec_level"].isin(sec_level)]
        else:
            filtered_data = filtered_data[filtered_data["sec_level"] == sec_level]
    if kem_alg is not None:
        filtered_data = filtered_data[filtered_data["kem_alg"] == kem_alg]

    def drop_columns_with_only_zero_values(data):
        # this complicated way is necessary, because measurements is a list of values
        filtered_data_without_measurements = data.drop(columns=["measurements"])
        zero_columns_to_drop = (filtered_data_without_measurements != 0).any()
        zero_columns_to_drop = [
            col
            for col in filtered_data_without_measurements.columns
            if not zero_columns_to_drop[col]
        ]
        return data.drop(columns=zero_columns_to_drop)

    if drop_zero_columns and "measurements" in data.columns:
        filtered_data = drop_columns_with_only_zero_values(filtered_data)

        #     if drop_zero_columns:
        # filtered_data = drop_columns_with_only_zero_values(filtered_data)

    # print(filtered_data["measurements"].head())
    # print(filtered_data)
    return filtered_data


def get_x_axis_column_name(scenario: str) -> str:
    match scenario:
        case "duplicate":
            return "srv_duplicate"
        case "packetloss":
            return "srv_pkt_loss"
        case "delay":
            return "srv_delay"
        case "jitter_delay20ms":
            return "srv_jitter"
        case "corrupt":
            return "srv_corrupt"
        case "reorder":
            return "srv_reorder"
        case "rate_both":
            return "srv_rate"
        case "rate_client":
            return "cli_rate"
        case "rate_server":
            return "srv_rate"
        case "static":
            assert False, "static scenario has no x-axis"
        case _:
            print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
            sys.exit(1)


def get_x_axis(scenario, data, length):
    match scenario:
        case "duplicate":
            return data["srv_duplicate"]
        case "packetloss":
            return data["srv_pkt_loss"]
        case "delay":
            return data["srv_delay"]
            return data["srv_jitter"]
        case "corrupt":
            return data["srv_corrupt"]
        case "reorder":
            return data["srv_reorder"]
        case "rate_both":
            return data["srv_rate"]
        case "rate_client":
            return data["cli_rate"]
        case "rate_server":
            return data["srv_rate"]
        case "static":
            return pd.Series(range(length))
        case _:
            print(f"NO MATCH FOUND FOR {scenario}", file=sys.stderr)
            sys.exit(1)


def map_security_level_hybrid_together(sec_level: str):
    match sec_level:
        case "secLevel1":
            return ["secLevel1", "secLevel1_hybrid"]
        case "secLevel3":
            return ["secLevel3", "secLevel3_hybrid"]
        case "secLevel5":
            return ["secLevel5", "secLevel5_hybrid"]
        case "miscLevel":
            return "miscLevel"
        case _:
            return None
def get_color_and_mode(kem_alg: str, combined_with_hybrids: bool = False):
    # NOTE maybe just use hle colors directly from the start
    primary_mode = "-"
    secondary_mode = "--" if combined_with_hybrids else "-"
    tertiary_mode = ":" if combined_with_hybrids else "--"

    secondary_lightness_factor = 0.9 if combined_with_hybrids else 1
    tertiary_lightness_factor = 0.8 if combined_with_hybrids else 0.9

    a = 0.8 if combined_with_hybrids else 1

    no_algos = 8
    match kem_alg:
        case "secp256r1":
            return cmap(0 / no_algos), primary_mode
        case "secp384r1":
            return cmap(0.3 / no_algos), primary_mode
        case "secp521r1":
            return cmap(0.6 / no_algos), primary_mode
        case "x25519":
            return cmap(0 / no_algos), "--"
        case "x448":
            return cmap(0.3 / no_algos), "--"
        case "mlkem512":
            return cmap(1 / no_algos), primary_mode
        case "p256_mlkem512":
            return (
                transform_cmap_color(
                    cmap(1 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_mlkem512":
            return (
                transform_cmap_color(
                    cmap(1 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "mlkem768":
            return cmap(1.3 / no_algos), primary_mode
        case "p384_mlkem768":
            return (
                transform_cmap_color(
                    cmap(1.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x448_mlkem768":
            return (
                transform_cmap_color(
                    cmap(1.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "mlkem1024":
            return cmap(1.6 / no_algos), primary_mode
        case "p521_mlkem1024":
            return (
                transform_cmap_color(
                    cmap(1.6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "bikel1":
            return cmap(2 / no_algos), primary_mode
        case "p256_bikel1":
            return (
                transform_cmap_color(
                    cmap(2 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_bikel1":
            return (
                transform_cmap_color(
                    cmap(2 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "bikel3":
            return cmap(2.3 / no_algos), primary_mode
        case "p384_bikel3":
            return (
                transform_cmap_color(
                    cmap(2.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x448_bikel3":
            return (
                transform_cmap_color(
                    cmap(2.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "bikel5":
            return cmap(2.6 / no_algos), primary_mode
        case "p521_bikel5":
            return (
                transform_cmap_color(
                    cmap(2.6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "hqc128":
            return cmap(4 / no_algos), primary_mode
        case "p256_hqc128":
            return (
                transform_cmap_color(
                    cmap(4 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_hqc128":
            return (
                transform_cmap_color(
                    cmap(4 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "hqc192":
            return cmap(4.3 / no_algos), primary_mode
        case "p384_hqc192":
            return (
                transform_cmap_color(
                    cmap(4.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x448_hqc192":
            return (
                transform_cmap_color(
                    cmap(4.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "hqc256":
            return cmap(4.6 / no_algos), primary_mode
        case "p521_hqc256":
            return (
                transform_cmap_color(
                    cmap(4.6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "frodo640aes":
            return cmap(5 / no_algos), primary_mode
        case "p256_frodo640aes":
            return (
                transform_cmap_color(
                    cmap(5 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_frodo640aes":
            return (
                transform_cmap_color(
                    cmap(5 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "frodo640shake":
            return cmap(6 / no_algos), primary_mode
        case "p256_frodo640shake":
            return (
                transform_cmap_color(
                    cmap(6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_frodo640shake":
            return (
                transform_cmap_color(
                    cmap(6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "frodo976aes":
            return cmap(5.3 / no_algos), primary_mode
        case "p384_frodo976aes":
            return (
                transform_cmap_color(
                    cmap(5.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x448_frodo976aes":
            return (
                transform_cmap_color(
                    cmap(5.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "frodo976shake":
            return cmap(6.3 / no_algos), primary_mode
        case "p384_frodo976shake":
            return (
                transform_cmap_color(
                    cmap(6.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x448_frodo976shake":
            return (
                transform_cmap_color(
                    cmap(6.3 / no_algos),
                    alpha_factor=a,
                    lightness_factor=tertiary_lightness_factor,
                ),
                tertiary_mode,
            )
        case "frodo1344aes":
            return cmap(5.6 / no_algos), primary_mode
        case "p521_frodo1344aes":
            return (
                transform_cmap_color(
                    cmap(5.6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "frodo1344shake":
            return cmap(6.6 / no_algos), primary_mode
        case "p521_frodo1344shake":
            return (
                transform_cmap_color(
                    cmap(6.6 / no_algos),
                    alpha_factor=a,
                    lightness_factor=secondary_lightness_factor,
                ),
                secondary_mode,
            )
        case "x25519_mlkem768":
            return (
                transform_cmap_color(cmap(7 / no_algos), alpha_factor=a),
                primary_mode,
            )
        case "p256_mlkem768":
            return (
                transform_cmap_color(
                    cmap(7.5 / no_algos), lightness_factor=secondary_lightness_factor
                ),
                primary_mode,
            )
        case "p384_mlkem1024":
            return (
                transform_cmap_color(
                    cmap(7.99 / no_algos), lightness_factor=tertiary_lightness_factor
                ),
                primary_mode,
            )
        case _:
            print(f"NO COLOR MATCH FOUND FOR {kem_alg}", file=sys.stderr)
            sys.exit(1)


def get_color_and_mode_for_protocol(protocol: str):
    primary_mode = "-"

    no_protocols = 6
    match protocol:
        case "quic":
            return cmap(0 / no_protocols), primary_mode
        case "tlstcp":
            return cmap(1 / no_protocols), primary_mode
        case "cquiche-reno":
            return cmap(2 / no_protocols), primary_mode
        case "cquiche-cubic":
            return cmap(3 / no_protocols), primary_mode
        case "cquiche-bbr":
            return cmap(4 / no_protocols), primary_mode
        case "cquiche-bbr2":
            return cmap(5 / no_protocols), primary_mode
        case _:
            print(f"NO COLOR MATCH FOUND FOR Protocol {protocol}", file=sys.stderr)
            sys.exit(1)


def transform_cmap_color(
    color, hue_shift=0, saturation_factor=1, lightness_factor=1, alpha_factor=1
):
    def value_between(minimum, value, maximum):
        return max(minimum, min(value, maximum))

    r, g, b, a = color
    h, l, s = colorsys.rgb_to_hls(r, g, b)
    h += hue_shift
    l *= lightness_factor
    l = value_between(0, l, 1)
    s *= saturation_factor
    s = value_between(0, s, 1)
    r, g, b = colorsys.hls_to_rgb(h, l, s)
    a *= alpha_factor
    return r, g, b, a


def get_label_for_scenario(label: str) -> str:
    match label:
        case "delay":
            return "Latenz (ms)"
        case "jitter_delay20ms":
            return "Jitter (ms)"
        case "packetloss":
            return "Paketverlustrate (%)"
        case "duplicate":
            return "Duplikationsrate (%)"
        case "corrupt":
            return "Korruptierungsrate (%)"
        case "reorder":
            return "Neuanordnungsrate (%)"
        case "rate_both":
            return "Bandbreite (Mbit/s)"
        case "rate_client":
            return "Bandbreite Client (Mbit/s)"
        case "rate_server":
            return "Bandbreite Server (Mbit/s)"
        case "static":
            return "Nummerierung der Messung"
        case _:
            print(f"NO LABEL FOUND FOR {label}", file=sys.stderr)
            sys.exit(1)


# plots lines of different statistical values
def plot_lines(data):
    def plot_lines_for_sec_level(
        data, line_type="median", combined_with_hybrids: bool = False
    ):
            f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/combined-with-hybrids",
        # get all combination of scenario, protocol, sec_level
        unique_combinations = data[
            ["scenario", "protocol", "sec_level"]
        ].drop_duplicates()
        # print(len(unique_combinations))
        # print(unique_combinations)
        for _, row in unique_combinations.iterrows():
            sec_level = row["sec_level"]
            if combined_with_hybrids:
                sec_level = map_security_level_hybrid_together(row["sec_level"])
                if sec_level is None:
                    continue
            filtered_data = filter_data(
                data,
                scenario=row["scenario"],
                protocol=row["protocol"],
                sec_level=sec_level,
            )
            # print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")
            plt.figure()
            for idx, kem_alg in enumerate(
                filtered_data["kem_alg"].unique().sort_values()
            ):
                # color = cmap(idx / len(filtered_data["kem_alg"].unique()))
                color, mode = get_color_and_mode(
                    kem_alg, combined_with_hybrids=combined_with_hybrids
                )

                filtered_data_single_kem_alg = filter_data(
                    filtered_data, kem_alg=kem_alg
                )
                # print(filtered_data_single_kem_alg)
                y = filtered_data_single_kem_alg[line_type]
                x = get_x_axis(row["scenario"], filtered_data_single_kem_alg, len(y))

                # print(
                #     f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
                # )
                # print(f"x: {x}")
                # print(f"y: {y}")

                # plt.fill_between(x, filtered_data_single_kem_alg["qtl_25"], filtered_data_single_kem_alg["qtl_75"], alpha=0.2, color=color)
                plt.plot(x, y, linestyle=mode, marker=".", color=color, label=kem_alg)
            plt.xlim(left=0, right=x.max() + (x.max() / 50))
            plt.xlabel(get_label_for_scenario(row["scenario"]))
            y_label = f"Time-to-first-byte (ms)"
            if line_type == "iqr":
                y_label = "Interquartilsabstand (ms)"
            if line_type == "riqr":
                y_label = "Interquartilsabstand / Median"
            plt.ylabel(y_label)

            # plt.title(
            #     f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
            # )
            plt.legend(
                bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
            )
            plt.tight_layout()
            subdir = ""
            appendix = ""
            if combined_with_hybrids:
                subdir = "combined-with-hybrids/"
                appendix = "-combined-with-hybrids"
            plt.savefig(
                f"{PLOTS_DIR}/lines/per-protocol/{line_type}s-of-sec-level/{subdir}{line_type}-{row['scenario']}-{row['protocol']}-{row['sec_level']}{appendix}.pdf"
    def plot_lines_for_tcp_and_cquiche_cubic_for_a_sec_level(data, line_type="median"):
        os.makedirs(
            f"{PLOTS_DIR}/lines/between-cquiche-cubic-and-tlstcp/{line_type}s-of-sec-level/",
            mode=0o777,
            exist_ok=True,
        )

        # get all combination of scenario, protocol, sec_level
        unique_combinations = data[["scenario", "sec_level"]].drop_duplicates()
        # print(len(unique_combinations))
        # print(unique_combinations)

        for _, row in unique_combinations.iterrows():
            sec_level = row["sec_level"]
            filtered_data = filter_data(
                data,
                scenario=row["scenario"],
                sec_level=sec_level,
            )
            # print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}")

            plt.figure()
            for protocol in ["tlstcp", "cquiche-cubic"]:
                inner_filtered_data = filter_data(filtered_data, protocol=protocol)
                for idx, kem_alg in enumerate(
                    inner_filtered_data["kem_alg"].unique().sort_values()
                ):
                    # color = cmap(idx / len(inner_filtered_data["kem_alg"].unique()))
                    color, mode = get_color_and_mode(kem_alg)
                    if protocol == "tlstcp":
                        mode = "--"

                    inner_filtered_data_single_kem_alg = filter_data(
                        inner_filtered_data, kem_alg=kem_alg
                    )
                    # print(inner_filtered_data_single_kem_alg)
                    y = inner_filtered_data_single_kem_alg[line_type]
                    x = get_x_axis(
                        row["scenario"], inner_filtered_data_single_kem_alg, len(y)
                    )

                    # print(
                    #     f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {kem_alg}"
                    # )
                    # print(f"x: {x}")
                    # print(f"y: {y}")

                    prefix = "cquiche-cubic-"
                    if protocol == "tlstcp":
                        prefix = "tlstcp-"
                    plt.plot(
                        x,
                        y,
                        linestyle=mode,
                        marker=".",
                        color=color,
                        label=f"{prefix}{kem_alg}",
                    )

            plt.ylim(bottom=0)
            plt.xlim(left=0, right=x.max() + (x.max() / 50))
            plt.xlabel(get_label_for_scenario(row["scenario"]))
            y_label = f"Time-to-first-byte (ms)"
            if line_type == "iqr":
                y_label = "Interquartilsabstand (ms)"
            if line_type == "riqr":
                y_label = "Interquartilsabstand / Median"
            plt.ylabel(y_label)
            # plt.title(
            #     f"Medians of {row['scenario']} in {row['protocol']} in {row['sec_level']}"
            # )
            plt.grid()
            plt.legend(
                bbox_to_anchor=(0.5, 1),
                loc="lower center",
                ncol=3,
                fontsize="small",
            )
            plt.tight_layout()

            plt.savefig(
                f"{PLOTS_DIR}/lines/between-cquiche-cubic-and-tlstcp/{line_type}s-of-sec-level/{line_type}-{row['scenario']}-{row['sec_level']}.pdf"
            )
            plt.close()

    def plot_lines_for_comparisons_between_protocols(
        data, line_type="median", only_cquiche=False
    ):
        os.makedirs(
            f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s/only-cquiche-clients",
            mode=0o777,
            exist_ok=True,
        )

        ldata = data
        if only_cquiche:
            ldata = ldata[ldata["protocol"].str.startswith("cquiche")]

        # sec_level is only needed for the filename
        unique_combinations = ldata[
            ["scenario", "kem_alg", "sec_level"]
        ].drop_duplicates()

        for _, row in unique_combinations.iterrows():
            filtered_data = filter_data(
                scenario=row["scenario"],
                kem_alg=row["kem_alg"],
            )

            plt.figure()
            for idx, protocol in enumerate(
                filtered_data["protocol"].unique().sort_values()
            ):
                color, mode = get_color_and_mode_for_protocol(protocol)

                filtered_data_single_protocol = filter_data(
                    filtered_data, protocol=protocol
                )
                y = filtered_data_single_protocol[line_type]
                x = get_x_axis(row["scenario"], filtered_data_single_protocol, len(y))

                plt.plot(x, y, linestyle=mode, marker=".", color=color, label=protocol)

            plt.ylim(bottom=0)
            plt.xlim(left=0, right=x.max() + (x.max() / 50))
            plt.xlabel(get_label_for_scenario(row["scenario"]))
            y_label = f"Time-to-first-byte (ms)"
            if line_type == "iqr":
                y_label = "Interquartilsabstand (ms)"
            if line_type == "riqr":
                y_label = "Interquartilsabstand / Median"
            plt.ylabel(y_label)
            plt.legend(
                bbox_to_anchor=(0.5, 1), loc="lower center", ncol=3, fontsize="small"
            )
            plt.tight_layout()

            subdir = ""
            appendix = ""
            if only_cquiche:
                subdir = "only-cquiche-clients/"
                appendix = "-only-cquiche-clients"
            plt.savefig(
                f"{PLOTS_DIR}/lines/between-protocols/comparison-of-{line_type}s/{subdir}{line_type}-{row['scenario']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
    def plot_medians_for_rate_with_cutoff(data, cutoff=5, combined_with_hybrids=False):
        print("plot_medians_for_rate")
        os.makedirs(
            f"{PLOTS_DIR}/lines/medians-rate-with-cutoff/combined-with-hybrids",
            mode=0o777,
            exist_ok=True,
        )

        line_type = "median"
        for scenario in ["rate_both", "rate_client", "rate_server"]:
            # get all combination of scenario, protocol, sec_level
            ldata = data
            ldata = ldata.query("scenario == @scenario")
            unique_combinations = ldata[
                ["scenario", "protocol", "sec_level"]
            ].drop_duplicates()
            # print(len(unique_combinations))
            # print(unique_combinations)
            for _, row in unique_combinations.iterrows():
                sec_level = row["sec_level"]
                if combined_with_hybrids:
                    sec_level = map_security_level_hybrid_together(row["sec_level"])
                    if sec_level is None:
                        continue
                filtered_data = filter_data(
                    data,
                    scenario=scenario,
                    protocol=row["protocol"],
                    sec_level=sec_level,
                )
                # print(
                #     f"scenario: {scenario}, protocol: {row['protocol']}, sec_level: {row['sec_level']}"
                # )

                plt.figure()
                for idx, kem_alg in enumerate(
                    filtered_data["kem_alg"].unique().sort_values()
                ):
                    color, mode = get_color_and_mode(
                        kem_alg, combined_with_hybrids=combined_with_hybrids
                    )

                    filtered_data_single_kem_alg = filter_data(
                        filtered_data, kem_alg=kem_alg
                    )
                    y = filtered_data_single_kem_alg[line_type]
                    x = get_x_axis(scenario, filtered_data_single_kem_alg, len(y))

                    plt.plot(
                        x, y, linestyle=mode, marker=".", color=color, label=kem_alg
                    )

                plt.ylim(bottom=0)
                plt.xlim(left=0, right=cutoff + 0.2)
                plt.xlabel(get_label_for_scenario(scenario))
                plt.ylabel("Time-to-first-byte (ms)")

                plt.xticks(np.arange(0, cutoff + 0.5, 0.5))

                plt.grid()
                plt.legend(
                    bbox_to_anchor=(0.5, 1),
                    loc="lower center",
                    ncol=3,
                    fontsize="small",
                )
                plt.tight_layout()

                subdir = ""
                appendix = ""
                cutoff_str = f"-cutoff-at-{cutoff}"
                if combined_with_hybrids:
                    subdir = "combined-with-hybrids/"
                    appendix = "-combined-with-hybrids"
                plt.savefig(
                    f"{PLOTS_DIR}/lines/medians-rate-with-cutoff/{subdir}{line_type}-{scenario}-{row['protocol']}-{row['sec_level']}{cutoff_str}{appendix}.pdf"
                )
                plt.close()

    def plot_qtls_of_single_algorithm(data):
        print("plot_qtls_of_single_algorithms")
            f"{PLOTS_DIR}/lines/quantiles-of-single-algorithm",
            mode=0o777,
            exist_ok=True,
        # get all combination of scenario, protocol, sec_level, kem_alg
        unique_combinations = data[
            ["scenario", "protocol", "sec_level", "kem_alg"]
        ].drop_duplicates()
        for _, row in unique_combinations.iterrows():
                scenario=row["scenario"],
                protocol=row["protocol"],
                sec_level=row["sec_level"],
                kem_alg=row["kem_alg"],
            )
            # print(f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}")
            # plt.fill_between(
            #     x, filtered_data["qtl_25"], filtered_data["qtl_75"], alpha=0.5
            # )

            QUANTILES = [1, 5, 10, 25, 40, 50, 60, 75, 90, 95, 99]
            color_map = plt.get_cmap("viridis")
            measurements = np.array(filtered_data["measurements"])
            for qtl in QUANTILES:
                color = color_map(1 - (qtl / 100))
                y = [np.quantile(x, qtl / 100) for x in measurements]
                x = get_x_axis(row["scenario"], filtered_data, len(y))
                plt.plot(
                    x, y, linestyle="-", marker=".", color=color, label=f"{qtl} qtl"
                )

            plt.xlim(left=0, right=x.max() + (x.max() / 50))
            plt.xlabel(get_label_for_scenario(row["scenario"]))
            plt.ylabel(f"Time-to-first-byte (ms)")
            plt.legend(
                bbox_to_anchor=(0.5, 1), loc="lower center", ncol=6, fontsize="small"
            plt.tight_layout()
            # plt.title(
            #     f"Median of {row['scenario']} in {row['protocol']} in {row['sec_level']} with {row['kem_alg']}"
            # )
                f"{PLOTS_DIR}/lines/quantiles-of-single-algorithm/quantiles-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf"
    statistical_measurements = [
        "qtl_01",
        "qtl_05",
        "qtl_25",
        "qtl_75",
        "qtl_95",
        "qtl_99",
        "iqr",
        "riqr",
        "skewness",
        "kurtosis",
    ]
    for statistical_measurement in statistical_measurements:
        print(f"Generating graphs for {statistical_measurement}")
        plot_lines_for_sec_level(
            data, line_type=statistical_measurement, combined_with_hybrids=False
        )
        plot_lines_for_sec_level(
            data, line_type=statistical_measurement, combined_with_hybrids=True
        )
        plot_lines_for_comparisons_between_protocols(
            data, line_type=statistical_measurement, only_cquiche=False
        )
        plot_lines_for_comparisons_between_protocols(
            data, line_type=statistical_measurement, only_cquiche=True
        plot_lines_for_tcp_and_cquiche_cubic_for_a_sec_level(
            data, line_type=statistical_measurement
        )
    plot_qtls_of_single_algorithm(data)
    plot_medians_for_rate_with_cutoff(data, cutoff=5, combined_with_hybrids=False)
    plot_medians_for_rate_with_cutoff(data, cutoff=5, combined_with_hybrids=True)
# plots distributions of the individual data points
def plot_distributions(data):
    os.makedirs(
        f"{PLOTS_DIR}/distributions/single",
        mode=0o777,
        exist_ok=True,
    )

    def plot_multiple_violin_plots(data, filtered: bool = False):
        os.makedirs(
            f"{PLOTS_DIR}/distributions/multiple-violin-plots/filtered/",
            mode=0o777,
            exist_ok=True,
        )

        unique_combinations = data[
            ["scenario", "protocol", "sec_level", "kem_alg"]
        ].drop_duplicates()
        # print(unique_combinations)
        for _, row in unique_combinations.iterrows():
            filtered_data = filter_data(
                data,
                scenario=row["scenario"],
                protocol=row["protocol"],
                sec_level=row["sec_level"],
                kem_alg=row["kem_alg"],
            )
            if row["scenario"] == "static":
                continue
            # print(
            #     f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}, len: {len(filtered_data)}"
            # )
            # return the data with removed rows and the ticks for the x-axis
            def remove_rows_of_data(data):
                scenario = data.iloc[0]["scenario"]
                scenario_column_name = get_x_axis_column_name(scenario)
                match scenario:
                    case "packetloss" | "duplicate" | "reorder" | "corrupt":
                        # return data where src_packetloss is 0, 4, 8, 12, 16 or 20
                        ldata = data.query(f"{scenario_column_name} % 4 == 0")
                    case "jitter_delay20ms":
                        ldata = data[
                            data[scenario_column_name].isin([0, 3, 7, 12, 15, 20])
                        ]
                    case "rate_both" | "rate_client" | "rate_server":
                        ldata = data[
                            data[scenario_column_name].isin(
                                [
                                    0.1,
                                    5,
                                    10,
                                    100,
                                ]
                            )
                        ]
                    case "delay":
                        ldata = data[
                            data[scenario_column_name].isin([1, 20, 40, 80, 100, 190])
                        ]
                    case _:
                        print("No case for this scenario:", scenario)
                        ldata = pd.concat(
                            [
                                data.iloc[[0]],
                                data.iloc[3:-4:4],
                                data.iloc[[-1]],
                            ]
                        )
                return ldata, ldata[scenario_column_name].to_list()
            if filtered:
                filtered_data, tick_values = remove_rows_of_data(filtered_data)
                # if filtered_data.iloc[0]["scenario"] == "jitter_delay20ms":
                #     exit()

            plt.figure()
            x = get_x_axis(row["scenario"], filtered_data, len(filtered_data))
            x = x.to_list()
            # print(x)
            width = 0.5 if not filtered else 2.5
            vplots = plt.violinplot(
                filtered_data["measurements"],
                positions=x,
                showmedians=False,
                showextrema=False,
                widths=width,
            )
            for pc in vplots["bodies"]:
                pc.set_facecolor("blue")
                pc.set_edgecolor("darkblue")
            # make the median line transparent
            # for pc in plt.gca().collections:
            #     pc.set_alpha(0.5)

            plt.ylim(bottom=0)
            if filtered:
                plt.ylim(bottom=0, top=1.5 * filtered_data["qtl_95"].max())
                plt.xticks(tick_values)
            plt.xlim(left=-1.5)
            plt.xlabel(get_label_for_scenario(row["scenario"]))
            plt.ylabel(f"Time-to-first-byte (ms)")

            subdir = "filtered/" if filtered else ""
            appendix = "-filtered" if filtered else ""
            plt.savefig(
                f"{PLOTS_DIR}/distributions/multiple-violin-plots/{subdir}multiple-violin-plots-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}{appendix}.pdf"
            )
            plt.close()

    def plot_single_violin_plot(data):
        unique_combinations = data[
            ["scenario", "protocol", "sec_level", "kem_alg"]
        ].drop_duplicates()
        for _, row in unique_combinations.iterrows():
            filtered_data = filter_data(
                data,
                scenario=row["scenario"],
                protocol=row["protocol"],
                sec_level=row["sec_level"],
                kem_alg=row["kem_alg"],
            )
            # print(
            #     f"scenario: {row['scenario']}, protocol: {row['protocol']}, sec_level: {row['sec_level']}, kem_alg: {row['kem_alg']}"
            # )
            for _, row in filtered_data.iterrows():
                if row["scenario"] == "static":
                    continue
                value = get_x_axis(row["scenario"], row, 1)

                plt.figure()
                plt.violinplot(row["measurements"], showmedians=True)
                # plt.ylim(bottom=0)
                # plt.xlim(left=0, right=x.max() + (x.max() / 50))
                plt.xlabel("Dichte")
                plt.ylabel(f"Time-to-first-byte (ms)")

                plt.savefig(
                    f"{PLOTS_DIR}/distributions/single/single-violin-plot-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}-{value}.pdf"
                )
                plt.close()
                # return

    def plot_cdf_of_sec_level(data, cutoff=None):
        subdir_string = ""
        graph_name_extension = ""
        if cutoff is not None:
            subdir_string = f"cutoff-at-{cutoff}/"
            graph_name_extension = f"-cutoff-at-{cutoff}"
            f"{PLOTS_DIR}/distributions/cdf/per-sec-level/{subdir_string}",
            mode=0o777,
            exist_ok=True,
        )

        unique_combinations = data[
            ["scenario", "protocol", "sec_level"]
        ].drop_duplicates()

        # filter out every scenario that is not packetloss or corrupt
        unique_combinations = unique_combinations[
            unique_combinations["scenario"].isin(["packetloss", "corrupt"])
        ]
        # print(unique_combinations)

        for _, row in unique_combinations.iterrows():
            filtered_data = filter_data(
                data,
                scenario=row["scenario"],
                protocol=row["protocol"],
                sec_level=row["sec_level"],
            )
            # print(filtered_data)

            def get_row_name_for_scenario(scenario):
                match scenario:
                    case "packetloss":
                        return "srv_pkt_loss"
                    case "corrupt":
                        return "srv_corrupt"
                    case _:
                        print("No case for this scenario:", row["scenario"])
                        exit(1)

            row_name = get_row_name_for_scenario(row["scenario"])

            scenario_param_values = filtered_data[row_name].unique()
            # print(scenario_param_values)

            for param_value in scenario_param_values:
                filtered_data_single_param_value = filtered_data.query(
                    f"{row_name} == {param_value}"
                )
                # print(filtered_data_single_param_value)

                plt.figure()
                for _, row in filtered_data_single_param_value.iterrows():
                    color, mode = get_color_and_mode(
                        row["kem_alg"], combined_with_hybrids=False
                    )
                    plt.ecdf(
                        row["measurements"],
                        label=row["kem_alg"],
                        color=color,
                        linestyle=mode,
                    )

                # plt.ylim(bottom=0)
                # plt.xlim(left=0, right=x.max() + (x.max() / 50))
                plt.ylabel("Wahrscheinlichkeit")
                plt.xlabel(f"Time-to-first-byte (ms)")

                plt.legend(
                    bbox_to_anchor=(0.5, 1),
                    loc="lower center",
                    ncol=3,
                    fontsize="small",
                )

                    f"{PLOTS_DIR}/distributions/cdf/per-sec-level/{subdir_string}cdf-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{param_value}{graph_name_extension}.pdf"
    plot_multiple_violin_plots(data, filtered=False)
    plot_multiple_violin_plots(data, filtered=True)
    # plot_single_violin_plot(data)  # takes an age

    plot_cdf_of_sec_level(data, cutoff=None)
    plot_cdf_of_sec_level(data, cutoff=2000)
    plot_cdf_of_sec_level(data, cutoff=5000)
# TODO make a violinplot/eventplot for many algos in static scenario
def plot_static_data(data):
    os.makedirs(f"{PLOTS_DIR}/static/single", mode=0o777, exist_ok=True)

    def plot_static_data_for_multiple_algorithms(data):
        unique_combinations = data[["protocol", "sec_level"]].drop_duplicates()
        for idx, row in unique_combinations.iterrows():
            sec_level = map_security_level_hybrid_together(row["sec_level"])
            if sec_level is None:
                continue

            filtered_data = filter_data(
                data,
                scenario="static",
                protocol=row["protocol"],
                sec_level=sec_level,
            )

            # plt.figure(figsize=(6, 6))
            plt.figure()
            kem_algs = []
            for idx, kem_alg in enumerate(
                filtered_data["kem_alg"].unique().sort_values(),
            ):
                kem_algs.append(kem_alg)
                filtered_data_single_kem_alg = filter_data(
                    filtered_data, kem_alg=kem_alg
                )
                plt.boxplot(
                    filtered_data_single_kem_alg["median"],
                    positions=[idx],
                    widths=0.6,
                )

                iqrs = pd.concat(
                    [
                        iqrs,
                        pd.DataFrame(
                            {
                                "kem_alg": [kem_alg],
                                "iqr": [
                                    scipy.stats.iqr(
                                        filtered_data_single_kem_alg["median"]
                                    )
                                ],
                            }
                        ),
                    ],
                    ignore_index=True,
                )
                # print(
                #     f"IQR for {kem_alg}: {scipy.stats.iqr(filtered_data_single_kem_alg['median'])}"
                # )

            # Get the median irqs for all algorithms
            # print(row["protocol"], row["sec_level"])
            # print(iqrs)
            # print(iqrs["iqr"].describe())
            # print("Median:", iqrs["iqr"].median())
            # print("IQR:", scipy.stats.iqr(iqrs["iqr"]))
            # print()
            plt.xticks(
                range(len(filtered_data["kem_alg"].unique())),
                kem_algs,
                rotation=45,
                ha="right",
            )
            plt.xlabel("KEM Algorithms")
            plt.ylabel("Time-to-first-byte (ms)")

            sec_level_string = (
                sec_level if type(sec_level) == str else "-".join(sec_level)
            )
            plt.tight_layout()
            plt.savefig(
                os.path.join(
                    PLOTS_DIR,
                    "static",
                    f"boxplots-of-medians-for-static-{row['protocol']}-{sec_level_string}.pdf",
    def plot_static_data_for_single_algorithms(data):
        unique_combinations = data[
            ["scenario", "protocol", "sec_level", "kem_alg"]
        ].drop_duplicates()
        unique_combinations = filter_data(unique_combinations, scenario="static")
        for idx, row in unique_combinations.iterrows():
            filtered_data = filter_data(
                data,
                scenario="static",
                protocol=row["protocol"],
                sec_level=row["sec_level"],
                kem_alg=row["kem_alg"],
            )

            def boxplot_of_medians_for_configuration(filtered_data, row):
                plt.figure()
                plt.boxplot(filtered_data["median"])
                plt.savefig(
                    os.path.join(
                        PLOTS_DIR,
                        "static",
                        "single",
                        f"boxplot-of-medians-for-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
                    )
                plt.close()

            # why the density of violin plot and kde plot differ, while using the same scott kde just sideways:
            # Dove deep into the implementation from matplotlib and scipy, and they seem to calculate scotts factor in the same way, so dunno
            def condensed_violin_plot_for_configuration(filtered_data, row):
                # for multiple runs of the same static scenario, data taken together
                measurements_flattend = filtered_data["measurements"].explode().tolist()
                # print(filtered_data["measurements"].explode())
                # print(len(measurements_flattend))
                plt.figure()
                plt.violinplot(measurements_flattend, showmedians=True)
                plt.ylabel("Time-to-first-byte (ms)")
                plt.xlabel("Dichte")
                plt.savefig(
                    os.path.join(
                        PLOTS_DIR,
                        "static",
                        "single",
                        f"condensed-violin-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
                    )
                plt.close()

            def condensed_histogram_plot_for_configuration(filtered_data, row):
                measurements_flattend = filtered_data["measurements"].explode().tolist()
                plt.figure()
                plt.hist(measurements_flattend, bins=100, density=True)
                plt.xlabel("Time-to-first-byte (ms)")
                plt.ylabel("Dichte")

                plt.savefig(
                    os.path.join(
                        PLOTS_DIR,
                        "static",
                        "single",
                        f"condensed-histogram-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
                    )
                )
                plt.close()
            def condensed_kernel_density_estimate_plot_for_configuration(
                filtered_data, row
            ):
                measurements_flattend = filtered_data["measurements"].explode().tolist()
                plt.figure()

                kde = scipy.stats.gaussian_kde(measurements_flattend)
                xmin = min(measurements_flattend) - 0.2
                xmax = max(measurements_flattend) + 0.1
                x = np.linspace(
                    xmin,
                    xmax,
                    1000,
                kde_values = kde(x)

                plt.plot(x, kde_values)
                plt.fill_between(x, kde_values, alpha=0.5)

                plt.xlabel("Time-to-first-byte (ms)")
                plt.ylabel("Dichte")
                plt.xlim([xmin, xmax])
                plt.ylim([0, max(kde_values) + 0.1])

                plt.savefig(
                    os.path.join(
                        PLOTS_DIR,
                        "static",
                        "single",
                        f"condensed-kde-plot-for-{len(measurements_flattend)}-measurements-of-{row['scenario']}-{row['protocol']}-{row['sec_level']}-{row['kem_alg']}.pdf",
                    )
                )
                plt.close()

            boxplot_of_medians_for_configuration(filtered_data, row)
            condensed_violin_plot_for_configuration(filtered_data, row)
            condensed_histogram_plot_for_configuration(filtered_data, row)
            condensed_kernel_density_estimate_plot_for_configuration(filtered_data, row)
            # return

    plot_static_data_for_multiple_algorithms(data)
    plot_static_data_for_single_algorithms(data)
def plot_general_plots():
    def get_color_for_kem_algo(kem_algo):
        if "mlkem" in kem_algo:
            return "blue"
        if "bikel" in kem_algo:
            return "red"
        if "hqc" in kem_algo:
            return "green"
        if "frodo" in kem_algo:
            return "orange"
        return "grey"

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    def plot_oqs_performance():
        def plot_liboqs_performance(liboqs_speed_data):
            os.makedirs(
                "plots/general/oqs-performance/liboqs", mode=0o777, exist_ok=True
            )

            # print(liboqs_speed_data.columns)
            # print(
            #     liboqs_speed_data[
            #         [
            #             "algorithm",
            #             "keygen_mean_time_us",
            #             "encaps_mean_time_us",
            #             "decaps_mean_time_us",
            #             "total_liboqs_performance_time_us",
            #         ]
            #     ]
            # )
            # print(
            #     liboqs_speed_data[
            #         [
            #             "algorithm",
            #             "total_liboqs_performance_cpu_cycles",
            #             "total_expected_cycles",
            #             "total_liboqs_performance_ratio",
            #         ]
            #     ]
            # )

            # figure with all algorithms with times for each operation
            plt.figure()
            fig, ax = plt.subplots()
            bar_width = 0.5
            index = np.arange(len(liboqs_speed_data))

            color_map = plt.get_cmap("viridis")

            bar1 = ax.bar(
                index,
                liboqs_speed_data["keygen_mean_time_us"],
                bar_width,
                label="Keygen",
                color=color_map(0.1),
            )
            bar2 = ax.bar(
                index,
                liboqs_speed_data["encaps_mean_time_us"],
                bar_width,
                bottom=liboqs_speed_data["keygen_mean_time_us"],
                label="Encaps",
                color=color_map(0.4),
            )
            bar3 = ax.bar(
                index,
                liboqs_speed_data["decaps_mean_time_us"],
                bar_width,
                bottom=liboqs_speed_data["keygen_mean_time_us"]
                + liboqs_speed_data["encaps_mean_time_us"],
                label="Decaps",
                color=color_map(0.7),
            )

            values = liboqs_speed_data["total_liboqs_performance_time_us"]
            for idx, rect in enumerate(bar3):
                ax.text(
                    rect.get_x() + rect.get_width() / 2.0,
                    values.iloc[idx],
                    f"{values.iloc[idx]:.1f}",
                    ha="center",
                    va="bottom",
                    fontsize=8,
                )

            # ax.set_xlabel("Algorithm")
            ax.set_ylabel("Time (µs)")
            # ax.set_title("Keygen, Encaps, and Decaps Time by Algorithm")
            ax.set_xticks(index)
            ax.set_xticklabels(liboqs_speed_data["algorithm"], rotation=60, ha="right")
            ax.legend()

            ax.grid()
            ax.set_axisbelow(True)

            ax.set_ylim(
                0, liboqs_speed_data["total_liboqs_performance_time_us"].max() * 1.1
            )

            plt.tight_layout()
            plt.savefig(
                "plots/general/oqs-performance/liboqs/time-for-operations-for-each-algo.pdf"
            )
            plt.close()

            # figure with all algorithms with cycles for keygen, encaps and decaps, next to it the expected cycles for each operation
            liboqs_speed_data_bikel5_changed = liboqs_speed_data.copy()
            liboqs_speed_data_bikel5_changed.loc[
                liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
                "keygen_expected_cycles",
            ] = 0
            liboqs_speed_data_bikel5_changed.loc[
                liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
                "encaps_expected_cycles",
            ] = 0
            liboqs_speed_data_bikel5_changed.loc[
                liboqs_speed_data_bikel5_changed["algorithm"] == "BIKE-L5",
                "decaps_expected_cycles",
            ] = 0

            plt.figure()
            fig, ax = plt.subplots()
            bar_width = 0.35
            index = np.arange(len(liboqs_speed_data_bikel5_changed))

            # bar1 is for measured cycles, bar2 is for expected cycles
            bar11 = ax.bar(
                index - 0.01 - bar_width / 2,
                liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"],
                bar_width,
                label="Keygen",
                color=color_map(0.1),
            )
            bar12 = ax.bar(
                index - 0.01 - bar_width / 2,
                liboqs_speed_data_bikel5_changed["encaps_mean_cpu_cycles"],
                bar_width,
                bottom=liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"],
                label="Encaps",
                color=color_map(0.4),
            )
            bar13 = ax.bar(
                index - 0.01 - bar_width / 2,
                liboqs_speed_data_bikel5_changed["decaps_mean_cpu_cycles"],
                bar_width,
                bottom=liboqs_speed_data_bikel5_changed["keygen_mean_cpu_cycles"]
                + liboqs_speed_data_bikel5_changed["encaps_mean_cpu_cycles"],
                label="Decaps",
                color=color_map(0.7),
            )

            bar21 = ax.bar(
                index + 0.01 + bar_width / 2,
                liboqs_speed_data_bikel5_changed["keygen_expected_cycles"],
                bar_width,
                color=color_map(0.1),
            )
            bar22 = ax.bar(
                index + 0.01 + bar_width / 2,
                liboqs_speed_data_bikel5_changed["encaps_expected_cycles"],
                bar_width,
                bottom=liboqs_speed_data_bikel5_changed["keygen_expected_cycles"],
                color=color_map(0.4),
            )
            bar23 = ax.bar(
                index + 0.01 + bar_width / 2,
                liboqs_speed_data_bikel5_changed["decaps_expected_cycles"],
                bar_width,
                bottom=liboqs_speed_data_bikel5_changed["keygen_expected_cycles"]
                + liboqs_speed_data_bikel5_changed["encaps_expected_cycles"],
                color=color_map(0.7),
            )

            values = liboqs_speed_data_bikel5_changed[
                "total_liboqs_performance_cpu_cycles"
            ]
            for idx, rect in enumerate(bar13):
                ax.text(
                    rect.get_x() + rect.get_width() / 2.0,
                    values.iloc[idx] + 100000,
                    f"{int(values.iloc[idx])}",
                    ha="center",
                    va="bottom",
                    fontsize=8,
                    rotation=90,
                )

            values = liboqs_speed_data_bikel5_changed["total_expected_cycles"]
            for idx, rect in enumerate(bar23):
                if "BIKE-L5" == liboqs_speed_data_bikel5_changed["algorithm"].iloc[idx]:
                    continue
                ax.text(
                    rect.get_x() + rect.get_width() / 2.0,
                    values.iloc[idx] + 100000,
                    f"{int(values.iloc[idx])}",
                    ha="center",
                    va="bottom",
                    fontsize=8,
                    rotation=90,
                )

            ax.set_ylabel("CPU Zyklen in Millionen")
            ax.yaxis.set_major_formatter(
                ticker.FuncFormatter(lambda x, _: f"{int(x/1_000_000)}")
            )
            ax.set_xticks(index)
            ax.set_xticklabels(
                liboqs_speed_data_bikel5_changed["algorithm"], rotation=60, ha="right"
            )
            ax.legend()

            ax.grid()
            ax.set_axisbelow(True)

            ax.set_ylim(
                0,
                max(
                    liboqs_speed_data_bikel5_changed[
                        "total_liboqs_performance_cpu_cycles"
                    ].max(),
                    liboqs_speed_data_bikel5_changed["total_expected_cycles"].max(),
                )
                * 1.3,
            )

            plt.tight_layout()
            plt.savefig(
                "plots/general/oqs-performance/liboqs/cycles-for-operations-for-each-algo-next-to-expected-cycles.pdf"
            )
            plt.close()

        def plot_openssl_performance(openssl_speed_data, secLevel=""):
            os.makedirs(
                "plots/general/oqs-performance/openssl", mode=0o777, exist_ok=True
            )

            # print(openssl_speed_data.columns)

            color_map = plt.get_cmap("inferno")

            plt.figure()
            fig, ax = plt.subplots()
            bar_width = 0.35
            index = np.arange(len(openssl_speed_data))

            # bar1 is for measured cycles, bar2 is for expected cycles
            bar11 = ax.bar(
                index - 0.01 - bar_width / 2,
                openssl_speed_data["keygen_mean_time_s"],
                bar_width,
                label="Keygen",
                color=color_map(0.1),
            )
            bar12 = ax.bar(
                index - 0.01 - bar_width / 2,
                openssl_speed_data["encaps_mean_time_s"],
                bar_width,
                bottom=openssl_speed_data["keygen_mean_time_s"],
                label="Encaps",
                color=color_map(0.4),
            )
            bar13 = ax.bar(
                index - 0.01 - bar_width / 2,
                openssl_speed_data["decaps_mean_time_s"],
                bar_width,
                bottom=openssl_speed_data["keygen_mean_time_s"]
                + openssl_speed_data["encaps_mean_time_s"],
                label="Decaps",
                color=color_map(0.7),
            )

            bar21 = ax.bar(
                index + 0.01 + bar_width / 2,
                openssl_speed_data["keygen_mean_time_s_expected"],
                bar_width,
                color=color_map(0.1),
            )
            bar22 = ax.bar(
                index + 0.01 + bar_width / 2,
                openssl_speed_data["encaps_mean_time_s_expected"],
                bar_width,
                bottom=openssl_speed_data["keygen_mean_time_s_expected"],
                color=color_map(0.4),
            )
            bar23 = ax.bar(
                index + 0.01 + bar_width / 2,
                openssl_speed_data["decaps_mean_time_s_expected"],
                bar_width,
                bottom=openssl_speed_data["keygen_mean_time_s_expected"]
                + openssl_speed_data["encaps_mean_time_s_expected"],
                color=color_map(0.7),
            )

            values = openssl_speed_data["total_actual_performance_time_s"]
            for idx, rect in enumerate(bar13):
                ax.text(
                    rect.get_x() + rect.get_width() / 2.0,
                    values.iloc[idx] + 0.0001,
                    f"{values.iloc[idx]:.6f}",
                    ha="center",
                    va="bottom",
                    fontsize=8,
                    rotation=90,
                )

            values = openssl_speed_data["total_expected_performance_time_s"]
            for idx, rect in enumerate(bar23):
                ax.text(
                    rect.get_x() + rect.get_width() / 2.0,
                    values.iloc[idx] + 0.0001,
                    f"{values.iloc[idx]:.6f}",
                    ha="center",
                    va="bottom",
                    fontsize=8,
                    rotation=90,
                )

            ax.set_ylabel("Zeit in Sekunden")
            ax.set_xticks(index)
            ax.set_xticklabels(openssl_speed_data["algorithm"], rotation=60, ha="right")
            ax.legend()

            ax.grid()
            ax.set_axisbelow(True)

            ax.set_ylim(
                0,
                max(
                    openssl_speed_data["total_actual_performance_time_s"].max(),
                    openssl_speed_data["total_expected_performance_time_s"].max(),
                )
                * 1.3,
            )

            plt.tight_layout()
            plt.savefig(
                f"plots/general/oqs-performance/openssl/time-vs-expected-time{secLevel}.pdf"
            )
            plt.close()

        liboqs_speed_data = pd.read_feather(f"saved/feathers/liboqs_speed_vm.feather")
        liboqs_speed_data = (
            performance_eval_of_oqs.concat_liboqs_speed_data_with_expected_values(
                liboqs_speed_data
            )
        )
        plot_liboqs_performance(liboqs_speed_data)

        openssl_speed_data = pd.read_feather(f"saved/feathers/openssl_speed_vm.feather")
        openssl_speed_data = performance_eval_of_oqs.analyze_openssl_speed_data(
            openssl_speed_data
        )
        openssl_speed_data = openssl_speed_data.copy()
        openssl_speed_data = openssl_speed_data[
            openssl_speed_data["algorithm"].str.contains("_")
        ]
        plot_openssl_performance(openssl_speed_data)
        openssl_speed_data_secLevel1 = openssl_speed_data.copy()
        openssl_speed_data_secLevel1 = openssl_speed_data_secLevel1[
            openssl_speed_data_secLevel1["algorithm"].str.contains("p256_|x25519_")
        ]
        plot_openssl_performance(openssl_speed_data_secLevel1, secLevel="-1")
        openssl_speed_data_secLevel35 = openssl_speed_data.copy()
        openssl_speed_data_secLevel35 = openssl_speed_data_secLevel35[
            openssl_speed_data_secLevel35["algorithm"].str.contains("p384_|p521_|x448_")
        ]
        plot_openssl_performance(openssl_speed_data_secLevel35, secLevel="-35")

    def plot_send_bytes_against_kem_performance(df, with_hybrids: bool):
        if not with_hybrids:
            # filter out all hybrids, otherwise the plot is too cluttered
            df = df[~df["kem_algo"].str.contains("_")]

        plt.figure()
        # plt.scatter(df["bytes_sent"], df["performance_us"])
        for kem_algo in df["kem_algo"]:
            subset = df[df["kem_algo"] == kem_algo]
            color = get_color_for_kem_algo(kem_algo)
            plt.scatter(
                subset["bytes_sent"],
                subset["performance_us"],
                color=color,
                label=kem_algo,
                alpha=0.7,
            )

        for i, txt in enumerate(df["kem_algo"]):
            plt.annotate(
                txt,
                (df["bytes_sent"].iloc[i], df["performance_us"].iloc[i]),
                xytext=(0, -3),
                textcoords="offset points",
                fontsize=8,
                ha="center",
                va="bottom",
            )

        plt.xscale("log")
        plt.yscale("log")
        plt.xlim(30)
        plt.ylim(30)

        # custom tick stuff from claude
        def custom_ticks(start, end):
            ticks = [start] + [
                10**i for i in range(int(np.log10(start)) + 1, int(np.log10(end)) + 1)
            ]
            return ticks

        x_ticks = custom_ticks(30, df["bytes_sent"].max())
        y_ticks = custom_ticks(30, df["performance_us"].max())
        plt.xticks(x_ticks, [f"{int(x):,}" for x in x_ticks])
        plt.yticks(y_ticks, [f"{int(y):,}" for y in y_ticks])

        plt.xlabel("Übertragungslänge (Bytes)")
        plt.ylabel("Performanz der Operationen (µs)")
            "scatter-of-bytes-sent-against-kem-performance-with-hybrids.pdf"
            if with_hybrids
            else "scatter-of-bytes-sent-against-kem-performance.pdf"
        )
        plt.savefig(
            os.path.join(PLOTS_DIR, "general", name),
            dpi=300,
        )
        plt.close()

    def plot_public_key_length_against_ciphertext_length(
        df, with_hybrids: bool, with_lines: bool
    ):
        if not with_hybrids:
            # filter out all hybrids, otherwise the plot is too cluttered
            df = df[~df["kem_algo"].str.contains("_")]

        # only keep one for frodo, since they are the same and remove the hash algo
        df = df[~df["kem_algo"].str.contains("shake")]
        df.loc[:, "kem_algo"] = df["kem_algo"].apply(lambda x: x.replace("aes", ""))

        plt.figure()
        for kem_algo in df["kem_algo"]:
            subset = df[df["kem_algo"] == kem_algo]
            color = get_color_for_kem_algo(kem_algo)
            plt.scatter(
                subset["length_public_key"],
                subset["length_ciphertext"],
                color=color,
                label=kem_algo,
                alpha=0.7,
            )

        for i, txt in enumerate(df["kem_algo"]):
            annotate_offset = (0, -3)
            if "bikel1" in txt:
                annotate_offset = (0, 0)
            if "mlkem1024" in txt:
                annotate_offset = (0, -7)
            plt.annotate(
                txt,
                (df["length_public_key"].iloc[i], df["length_ciphertext"].iloc[i]),
                xytext=annotate_offset,
                textcoords="offset points",
                fontsize=8,
                ha="center",
                va="bottom",
            )

        if with_lines:
            # reason for these magic numbers in obsidian note [[Packet lengths in QUIC over Ethernet]]
            plt.axvline(x=940, color="purple", linestyle="--", label="1 Paket Grenze")
            plt.axhline(y=277, color="purple", linestyle="--", label="1 Paket Grenze")
            plt.axvline(
                x=940 + 1157, color="purple", linestyle="--", label="2 Paket Grenze"
            )
            plt.axhline(
                y=277 + 1100, color="purple", linestyle="--", label="2 Paket Grenze"
            )

        plt.xscale("log")
        plt.yscale("log")
        plt.xlim(10)
        plt.ylim(10)

        plt.xlabel("Public Key Länge in Bytes")
        plt.ylabel("Ciphertext Länge in Bytes")

        plt.gca().xaxis.set_major_formatter(ticker.ScalarFormatter())
        plt.gca().yaxis.set_major_formatter(ticker.ScalarFormatter())

        with_hybrids_string = "-with-hybrids" if with_hybrids else ""
        with_lines_string = "-with-lines" if with_lines else ""
        name = f"scatter-of-public-key-against-ciphertext-length{with_hybrids_string}{with_lines_string}.pdf"
        plt.savefig(
            os.path.join(PLOTS_DIR, "general", name),
            dpi=300,
        )
        plt.close()

    # This does not yet seem like a good idea
    # TODO use the riqr to make some graphs
    def plot_median_against_iqr(data):
        plt.figure()
        plt.hexbin(data["median"], data["iqr"], gridsize=50)
        print(data["iqr"].describe())
        print(data["median"].describe())
        # get the line with the maximum median
        max_median = data["median"].idxmax()
        print(data.iloc[max_median])
        plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hexbin.pdf")
        plt.close()

        plt.figure()
        plt.hist2d(data["median"], data["iqr"], bins=50)
        plt.savefig(f"{PLOTS_DIR}/general/median_against_iqr_hist2d.pdf")
        plt.close()

    os.makedirs(f"{PLOTS_DIR}/general", mode=0o777, exist_ok=True)
    df = helper_functions.prepare_kem_performance_data_for_plotting(
        helper_functions.get_kem_performance_data()
    )

    plot_send_bytes_against_kem_performance(df, with_hybrids=False)
    plot_send_bytes_against_kem_performance(df, with_hybrids=True)

    plot_public_key_length_against_ciphertext_length(
        df, with_hybrids=False, with_lines=True
    )
    plot_public_key_length_against_ciphertext_length(
        df, with_hybrids=False, with_lines=False
    )
    plot_public_key_length_against_ciphertext_length(
        df, with_hybrids=True, with_lines=True
    )
    plot_public_key_length_against_ciphertext_length(
        df, with_hybrids=True, with_lines=False
    )
if __name__ == "__main__":
    main()
Loading
Loading full blame...