Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • main
  • nikolai
  • quentin
3 results

Target

Select target project
  • ginn4win/ginn-praktikum
1 result
Select Git revision
  • main
  • nikolai
  • quentin
3 results
Show changes
Commits on Source (2)
%% Cell type:markdown id: tags:
#0.  Imports und Helper
%% Cell type:code id: tags:
``` python
!pip install torchinfo
!pip install matplotlib --quiet
!pip install tqdm
```
%% Output
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: torchinfo in /home/niko/.local/lib/python3.10/site-packages (1.8.0)
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: tqdm in /home/niko/.local/lib/python3.10/site-packages (4.66.1)
%% Cell type:code id: tags:
``` python
# Imports
import copy
import ipywidgets as widgets
import matplotlib.pyplot as plt
import numpy as np
import time
import torch
import torchvision
#import torchvision.datasets as datasets
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import tqdm
import random
import keras.datasets.imdb
from torch.autograd import Variable
from tqdm.auto import tqdm as tqdmauto
import timeit
```
%% Cell type:code id: tags:
``` python
def set_seed(seed=None, seed_torch=True):
"""
Handles variability by controlling sources of randomness
through set seed values
Args:
seed: Integer
Set the seed value to given integer.
If no seed, set seed value to random integer in the range 2^32
seed_torch: Bool
Seeds the random number generator for all devices to
offer some guarantees on reproducibility
Returns:
Nothing
"""
if seed is None:
seed = np.random.choice(2 ** 32)
random.seed(seed)
np.random.seed(seed)
if seed_torch:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print(f'Random seed {seed} has been set.')
SEED = 2021
set_seed(seed=SEED)
DEVICE = "cuda"
def zero_grad(params):
"""
Clear gradients as they accumulate on successive backward calls
Args:
params: an iterator over tensors
i.e., updating the Weights and biases
Returns:
Nothing
"""
for par in params:
if not(par.grad is None):
par.grad.data.zero_()
def print_params(model):
"""
Lists the name and current value of the model's
named parameters
Args:
model: an nn.Module inherited model
Represents the ML/DL model
Returns:
Nothing
"""
for name, param in model.named_parameters():
if param.requires_grad:
print(name, param.data)
def sample_minibatch(input_data, target_data, num_points=100):
"""
Sample a minibatch of size num_point from the provided input-target data
Args:
input_data: Tensor
Multi-dimensional tensor containing the input data
target_data: Tensor
1D tensor containing the class labels
num_points: Integer
Number of elements to be included in minibatch with default=100
Returns:
batch_inputs: Tensor
Minibatch inputs
batch_targets: Tensor
Minibatch targets
"""
# Sample a collection of IID indices from the existing data
batch_indices = np.random.choice(len(input_data), num_points)
# Use batch_indices to extract entries from the input and target data tensors
batch_inputs = input_data[batch_indices, :]
batch_targets = target_data[batch_indices]
return batch_inputs, batch_targets
def gradient_update(loss, params, lr=1e-3):
"""
Perform a gradient descent update on a given loss over a collection of parameters
Args:
loss: Tensor
A scalar tensor containing the loss through which the gradient will be computed
params: List of iterables
Collection of parameters with respect to which we compute gradients
lr: Float
Scalar specifying the learning rate or step-size for the update
Returns:
Nothing
"""
# Clear up gradients as Pytorch automatically accumulates gradients from
# successive backward calls
zero_grad(params)
# Compute gradients on given objective
loss.backward()
with torch.no_grad():
for par in params:
# Here we work with the 'data' attribute of the parameter rather than the
# parameter itself.
# Hence - use the learning rate and the parameter's .grad.data attribute to perform an update
par.data -= lr * par.grad.data
```
%% Output
Random seed 2021 has been set.
%% Cell type:code id: tags:
``` python
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=10000, maxlen=250,)
# print the first comment
word_indizes_orig = keras.datasets.imdb.get_word_index(path="imdb_word_index.json")
word_indizes = {v: k for k, v in word_indizes_orig.items()}
for i in x_train[0]:
print(f"{word_indizes.get(i-3, '')}", end=" ")
print()
def vectorize_sequences(sequences, dimension=10000):
# all zero matrix of shape (len(sequences), dimension)
result = np.zeros((len(sequences), dimension))
for i,sequence in enumerate(sequences):
result[i, sequence] = 1
return result
print(len(x_train))
print(len(x_test))
x_train = vectorize_sequences(x_train)
x_test = vectorize_sequences(x_test)
#x_train = np.expand_dims(x_train, -1)
#x_test = np.expand_dims(x_test, -1)
x_train = Variable(torch.from_numpy(x_train)).float().to(DEVICE)
y_train = Variable(torch.from_numpy(y_train)).long().to(DEVICE)
x_test = Variable(torch.from_numpy(x_test)).float().to(DEVICE)
y_test = Variable(torch.from_numpy(y_test)).long().to(DEVICE)
print("x_train shape:", x_train.shape)
print("y_train shape:", y_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
```
%% Output
this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert is an amazing actor and now the same being director father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also to the two little boy's that played the of norman and paul they were just brilliant children are often left out of the list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don't you think the whole story was so lovely because it was true and was someone's life after all that was shared with us all
17121
17588
x_train shape: torch.Size([17121, 10000])
y_train shape: torch.Size([17121])
17121 train samples
17588 test samples
%% Cell type:code id: tags:
``` python
# Why so many data? I thought the imdb dataset consists only of 25000 reviews?
```
%% Cell type:markdown id: tags:
# 1.  Softmax Implementieren
Implementieren Sie die Softmax Funktion mit Numpy und stellen Sie zunächst sicher, dass diese die selben Ergebnisse liefert wie die Pytorch-Funktion im Beispiel. Vergleichen Sie dann Ihre Implementierungen mit anderen Gruppen und diskutieren Sie auch über Performance und numerische Stabilität. Erstellen Sie ein kleines Benchmark, um Performance und numerische Stabilität zu testen.
%% Cell type:code id: tags:
``` python
def softmax(vector):
exp_vec = np.exp(vector)
vec_sum = exp_vec.sum()
return exp_vec / vec_sum
def softmax_save(vector):
norm_vec = vector - torch.max(vector)
exp_vec = np.exp(norm_vec)
vec_sum = exp_vec.sum()
return exp_vec / vec_sum
```
%% Cell type:code id: tags:
``` python
# test softmax
m = nn.Softmax(dim=1)
tolerance = 1e-6
for i in range(1000):
input = torch.randn(1, 3)
soft1 = softmax(input)
soft2 = m(input)
soft3 = softmax_save(input)
if not np.allclose(soft1, soft2, tolerance) or not np.allclose(soft2, soft3, tolerance):
raise Exception(f"Error with Tensor: {input}")
```
%% Cell type:code id: tags:
``` python
# Numerical Stability
info = torch.finfo(torch.float32)
max_min_test = torch.tensor([info.max, info.min])
print(max_min_test)
print(softmax_save(max_min_test))
# test performance
counter = 1000
times_torch = np.zeros(counter)
times_own_safe = np.zeros(counter)
times_own_unsafe = np.zeros(counter)
m = nn.Softmax(dim=1)
for i in range(counter):
input = torch.randn(1, 200000)
time_torch = timeit.timeit(lambda: m(input), number=1)
time_own_safe = timeit.timeit(lambda: softmax_save(input), number=1)
time_own = timeit.timeit(lambda: softmax(input), number=1)
times_torch[i] = time_torch
times_own_safe[i] = time_own_safe
times_own_unsafe[i] = time_own
print(f"Avg time torch: {times_torch.mean()} vs own save implementation: {times_own_safe.mean()} vs unsafe: {times_own_unsafe.mean()}")
```
%% Output
tensor([ 3.4028e+38, -3.4028e+38])
tensor([1., 0.])
Avg time torch: 0.00021779541100002574 vs own save implementation: 0.0004932853010000429 vs unsafe: 0.00040290728599981664
%% Cell type:markdown id: tags:
# 2.  Regularisierung Implementieren
Unten finden Sie einen Pytorch-SGD Schritt mit eingebauter L2-Regularisierung und ohne. Interpretieren Sie die unterschiedlichen Ausgaben. Modifizieren Sie den ersten Codabschnitt mit einer eigenen L2-Regularisierung so, dass identische Ergebnisse erzeugt werden. Sie können dazu die noch nicht verwendete und noch falsch definierte Variable "regtermwrong" umdefinieren und zu einem späteren Zeitpunkt im Code darauf zurückgreifen. ACHTUNG: weight_decay*2=lambda.
%% Cell type:code id: tags:
``` python
#Datendefinition
np.random.seed(123)
np.set_printoptions(8, suppress=True)
x_numpy = np.random.random((3, 4)).astype(np.double)
w_numpy = np.random.random((4, 5)).astype(np.double)
w_numpy[0,0] =9.9
x_torch = torch.tensor(x_numpy, requires_grad=True)
```
%% Cell type:code id: tags:
``` python
# ohne Regularisierung
w_torch = torch.tensor(w_numpy, requires_grad=True)
print('Original weights', w_torch)
lr = 0.1
sgd = torch.optim.SGD([w_torch], lr=lr, weight_decay=0)
omega = w_torch.square().sum()
y_torch = torch.matmul(x_torch, w_torch)
loss = y_torch.sum() + 1 * omega #
sgd.zero_grad()
loss.backward()
sgd.step()
w_grad = w_torch.grad.data.numpy()
print('0 weight decay', w_torch)
```
%% Output
Original weights tensor([[9.9000, 0.0597, 0.3980, 0.7380, 0.1825],
[0.1755, 0.5316, 0.5318, 0.6344, 0.8494],
[0.7245, 0.6110, 0.7224, 0.3230, 0.3618],
[0.2283, 0.2937, 0.6310, 0.0921, 0.4337]], dtype=torch.float64,
requires_grad=True)
0 weight decay tensor([[ 7.7303, -0.1419, 0.1287, 0.4007, -0.0437],
[ 0.0302, 0.3151, 0.3153, 0.3974, 0.5694],
[ 0.4245, 0.3337, 0.4229, 0.1033, 0.1344],
[-0.0139, 0.0385, 0.3083, -0.1228, 0.1504]], dtype=torch.float64,
requires_grad=True)
%% Cell type:code id: tags:
``` python
#mit Regularisierung
w_torch = torch.tensor(w_numpy, requires_grad=True)
print('Reset Original weights', w_torch)
sgd = torch.optim.SGD([w_torch], lr=lr, weight_decay=2)
y_torch = torch.matmul(x_torch, w_torch)
loss = y_torch.sum()
sgd.zero_grad()
loss.backward()
sgd.step()
w_grad = w_torch.grad.data.numpy()
print('1 weight decay', w_torch)
```
%% Output
Reset Original weights tensor([[9.9000, 0.0597, 0.3980, 0.7380, 0.1825],
[0.1755, 0.5316, 0.5318, 0.6344, 0.8494],
[0.7245, 0.6110, 0.7224, 0.3230, 0.3618],
[0.2283, 0.2937, 0.6310, 0.0921, 0.4337]], dtype=torch.float64,
requires_grad=True)
1 weight decay tensor([[ 7.7303, -0.1419, 0.1287, 0.4007, -0.0437],
[ 0.0302, 0.3151, 0.3153, 0.3974, 0.5694],
[ 0.4245, 0.3337, 0.4229, 0.1033, 0.1344],
[-0.0139, 0.0385, 0.3083, -0.1228, 0.1504]], dtype=torch.float64,
requires_grad=True)
%% Cell type:code id: tags:
``` python
# FRAGE:
# Wieso ist der weight_decay hier doppelt? also warum etspricht alpha * 2 = lambda?
```
%% Cell type:markdown id: tags:
# 3.  Einfaches MLP in Pytorch
Machen Sie sich ein wenig mit dem IMDB Datensatz und den für Sie erstellten Datenstrukturen in x/y_train/test vertraut.
%% Cell type:markdown id: tags:
## 3.1 Modell erstellen und Angaben zur Modellgröße verstehen
Definieren Sie ein Pytorch Multilayer Perzeptron mit der Größe des IMDB-Dictionaries für one-hot-encodierte Wörte als Eingabe (Sigmoid Aktivierung), 50 Neuronen im Hidden Layer und 2 Ausgabeneuronen. Layer 1 und 2 Ihres Netzes verwendet die Sigmoid-Aktivierungsfunktion, Layer 3 die Softmax-Aktivierungsfunktion.
Generieren Sie Modell-Summary mit torchinfo und erklären Sie, was die ausgegebenen Werte bedeuten und wie diese zustande kommen.
%% Cell type:code id: tags:
``` python
#Ihr Code hier
class Model(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(10000, 50),
nn.Sigmoid(),
nn.Linear(50,50),
nn.Sigmoid(),
nn.Linear(50,2),
nn.Softmax()
)
def forward(self, x):
return self.layers(x)
```
%% Cell type:markdown id: tags:
## 3.2 Modell trainieren und Performancekurven interpretieren
Nutzen Sie den untenstehenedn Code um Ihr Modell zu trainieren. Interpretieren und diskutieren Sie die entstehenden Performancekurven. Falls Sie einen unerwarteten Anstieg Ihres Losses beobachten, recherchieren Sie wie Sie diese mit dem Einbau einer einzelnen Verbesserung innerhalb des gegebenen SGD Lernverfahrens beheben können. ACHTUNG: Wenn Sie Ihr Modell nicht oben neu initialisieren, optimieren Sie weiter auf den schon veränderten Parametern.
%% Cell type:code id: tags:
``` python
model = Model().to(DEVICE)
EPOCHS = 290 #@param {type:"slider", min:2, max:1000, step:1}
RATE = 0.9 #@param {type:"slider", min:0.001, max:2, step:0.001}
optimizer = torch.optim.SGD(model.parameters(), lr=RATE, weight_decay=0)
loss_fn = nn.CrossEntropyLoss()
loss_list = np.zeros((EPOCHS,))
accuracy_list = np.zeros((EPOCHS,))
accuracy_list_test = np.zeros((EPOCHS,))
for epoch in tqdm.trange(EPOCHS):
y_pred = model(x_train)
#loss = loss_fn(y_pred, y_train)
loss = loss_fn(y_pred, y_train)# + 0.01 *l2_reg(model)
loss_list[epoch] = loss.item()
# Zero gradients
optimizer.zero_grad()
loss.backward()
#torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)#, args.clip)
optimizer.step()
with torch.no_grad():
y_pred = model(x_train)
correct = (torch.argmax(y_pred, dim=1) == y_train).type(torch.FloatTensor)
accuracy_list[epoch] = correct.mean()
y_pred = model(x_test)
correct = (torch.argmax(y_pred, dim=1) == y_test).type(torch.FloatTensor)
accuracy_list_test[epoch] = correct.mean()
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(12, 6), sharex=True)
ax1.plot(accuracy_list)
ax1.set_ylabel("train accuracy")
ax2.plot(loss_list)
ax2.set_ylabel("train loss")
ax3.plot(accuracy_list_test)
ax3.set_ylabel("test acc")
ax3.set_xlabel("epochs");
```
%% Output
100%|█████████████████████████████████████████████████████████████████████████████████| 290/290 [00:06<00:00, 44.49it/s]
%% Cell type:markdown id: tags:
## 3.3.&nbsp;Momentum Implementieren
Vervollständigen Sie Methode momentum_update. Überlegen Sie sich, wie Sie die Korrektheit mit einem Durchlauf inkl. Momentum Update auf Ihrem oben definierten Modell prüfen können
%% Cell type:code id: tags:
``` python
def momentum_update(loss, params, grad_vel, lr=1e-3, beta=0.8):
# Clear up gradients as Pytorch automatically accumulates gradients from
# successive backward calls
zero_grad(params)
# Compute gradients on given objective
loss.backward()
with torch.no_grad():
for (par, vel) in zip(params, grad_vel):
if vel != None:
par.grad.data += beta * vel
par.data -= lr * par.grad.data
```
%% Cell type:code id: tags:
``` python
model = Model().to(DEVICE)
EPOCHS = 300 #@param {type:"slider", min:2, max:1000, step:1}
RATE = 0.9 #@param {type:"slider", min:0.001, max:2, step:0.001}
optimizer = torch.optim.SGD(model.parameters(), lr=RATE, weight_decay=0)
loss_fn = nn.CrossEntropyLoss()
loss_list = np.zeros((EPOCHS,))
accuracy_list = np.zeros((EPOCHS,))
accuracy_list_test = np.zeros((EPOCHS,))
params = list(model.parameters())
for epoch in tqdm.trange(EPOCHS):
y_pred = model(x_train)
#loss = loss_fn(y_pred, y_train)
loss = loss_fn(y_pred, y_train)# + 0.01 *l2_reg(model)
loss_list[epoch] = loss.item()
vel = [param.grad for param in params]
# Zero gradients
optimizer.zero_grad()
#loss.backward()
#momentum_update(loss, params, vel)
gradient_update(loss, params)
#torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)#, args.clip)
#optimizer.step()
with torch.no_grad():
y_pred = model(x_train)
correct = (torch.argmax(y_pred, dim=1) == y_train).type(torch.FloatTensor)
accuracy_list[epoch] = correct.mean()
y_pred = model(x_test)
correct = (torch.argmax(y_pred, dim=1) == y_test).type(torch.FloatTensor)
accuracy_list_test[epoch] = correct.mean()
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(12, 6), sharex=True)
ax1.plot(accuracy_list)
ax1.set_ylabel("train accuracy")
ax2.plot(loss_list)
ax2.set_ylabel("train loss")
ax3.plot(accuracy_list_test)
ax3.set_ylabel("test acc")
ax3.set_xlabel("epochs");
```
%% Output
100%|█████████████████████████████████████████████████████████████████████████████████| 300/300 [00:06<00:00, 45.36it/s]
%% Cell type:markdown id: tags:
## 3.4 Experimente zum Lernverhalten mit Momentum und Batch Size
Im folgenden können Sie für ein festgelegtes Zeitbudget schauen, wie sich der Loss Ihres neuronalen Netzes innerhalb dieser Zeit entwickelt.
Experimentieren Sie zunächst mit den Voreinstellungen mit und ohne Momentum, probieren Sie dann eigene Einstellungen aus. Diskutieren Sie das visualisierte Lernverhalten insbesondere bzgl. unterschiedlicher Batch Sizes.
%% Cell type:code id: tags:
``` python
@widgets.interact_manual
def minibatch_experiment(batch_sizes='1, 20, 500, 17000',
lrs='0.9, 0.9, 0.9, 0.9',
time_budget=widgets.Dropdown(options=["0.05", "0.5", "2.0", "5.0", "7.5"],
value="5.0"),
use_momentum = widgets.ToggleButton(value=True)):
"""
Demonstration of minibatch experiment
Args:
batch_sizes: String
Size of minibatches
lrs: String
Different learning rates
time_budget: widget dropdown instance
Different time budgets with default=2.5s
Returns:
Nothing
"""
batch_sizes = [int(s) for s in batch_sizes.split(',')]
lrs = [float(s) for s in lrs.split(',')]
LOSS_HIST = {_:[] for _ in batch_sizes}
#X, y = train_set.data, train_set.targets
base_model = Model().to(DEVICE)
#base_model = MLP(in_dim=784, out_dim=10, hidden_dims=[100, 100])
for id, batch_size in enumerate(tqdm.auto.tqdm(batch_sizes)):
start_time = time.time()
# Create a new copy of the model for each batch size
model = copy.deepcopy(base_model)
params = list(model.parameters())
lr = lrs[id]
# Fixed budget per choice of batch size
#initial_vel = [torch.randn_like(p) for p in model.parameters()]
aux_tensors = [torch.zeros_like(_) for _ in params]
while (time.time() - start_time) < float(time_budget):
data, labels = sample_minibatch(x_train, y_train, batch_size)
loss = loss_fn(model(data), labels)
if use_momentum:
momentum_update(loss, params, grad_vel=aux_tensors, lr=lr, beta=0.5)
else:
gradient_update(loss, params, lr=lr)
LOSS_HIST[batch_size].append([time.time() - start_time,
loss.item()])
fig, axs = plt.subplots(1, len(batch_sizes), figsize=(10, 3))
for ax, batch_size in zip(axs, batch_sizes):
plot_data = np.array(LOSS_HIST[batch_size])
ax.plot(plot_data[:, 0], plot_data[:, 1], label=batch_size,
alpha=0.8)
#ax.set_title('Batch size: ' + str(batch_size) + ' #: ' + str(batch_size*len(LOSS_HIST[batch_size])))
ax.set_title(' #: ' + str(batch_size*len(LOSS_HIST[batch_size])))
ax.set_xlabel('Seconds')
ax.set_ylabel('Loss')
plt.show()
#return(LOSS_HIST)
```
%% Output
%% Cell type:markdown id: tags:
![image.png]()
Source diff could not be displayed: it is too large. Options to address this: view the blob.
absl-py==2.0.0
aiohttp==3.8.6
aiosignal==1.3.1
anyio==4.0.0
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
asttokens==2.4.1
astunparse==1.6.3
async-lru==2.0.4
async-timeout==4.0.3
attrs==23.1.0
Babel==2.13.1
beautifulsoup4==4.12.2
bleach==6.1.0
blinker==1.4
cachetools==5.3.2
certifi==2023.7.22
cffi==1.16.0
charset-normalizer==3.3.2
comm==0.2.0
command-not-found==0.3
contourpy==1.2.0
cryptography==3.4.8
cycler==0.12.1
datasets==2.14.6
dbus-python==1.2.18
debugpy==1.8.0
decorator==5.1.1
defusedxml==0.7.1
dill==0.3.7
distro==1.7.0
distro-info==1.1+ubuntu0.1
dm-tree==0.1.8
exceptiongroup==1.1.3
executing==2.0.1
fastjsonschema==2.18.1
filelock==3.13.1
flatbuffers==23.5.26
fonttools==4.44.0
fqdn==1.5.1
frozenlist==1.4.0
fsspec==2023.10.0
gast==0.5.4
google-auth==2.25.1
google-auth-oauthlib==1.1.0
google-pasta==0.2.0
graphviz==0.20.1
grpcio==1.60.0
h5py==3.10.0
httplib2==0.20.2
huggingface-hub==0.18.0
idna==3.4
importlib-metadata==4.6.4
ipykernel==6.26.0
ipython==8.17.2
ipywidgets==8.1.1
isoduration==20.11.0
jedi==0.19.1
jeepney==0.7.1
Jinja2==3.1.2
joblib==1.3.2
json5==0.9.14
jsonpointer==2.4
jsonschema==4.19.2
jsonschema-specifications==2023.7.1
jupyter==1.0.0
jupyter-console==6.6.3
jupyter-events==0.9.0
jupyter-lsp==2.2.0
jupyter_client==8.6.0
jupyter_core==5.5.0
jupyter_server==2.10.0
jupyter_server_terminals==0.4.4
jupyterlab==4.0.8
jupyterlab-pygments==0.2.2
jupyterlab-widgets==3.0.9
jupyterlab_server==2.25.0
keras==2.15.0
keyring==23.5.0
kiwisolver==1.4.5
launchpadlib==1.10.16
lazr.restfulclient==0.14.4
lazr.uri==1.0.6
libclang==16.0.6
Mako==1.1.3
Markdown==3.5.1
markdown-it-py==3.0.0
MarkupSafe==2.1.3
matplotlib==3.8.1
matplotlib-inline==0.1.6
mdurl==0.1.2
mistune==3.0.2
ml-dtypes==0.2.0
more-itertools==8.10.0
mpmath==1.3.0
multidict==6.0.4
multiprocess==0.70.15
namex==0.0.7
nbclient==0.8.0
nbconvert==7.11.0
nbformat==5.9.2
nest-asyncio==1.5.8
netifaces==0.11.0
networkx==3.2.1
notebook==7.0.6
notebook_shim==0.2.3
numpy==1.26.1
nvidia-cublas-cu12==12.2.5.6
nvidia-cuda-cupti-cu12==12.2.142
nvidia-cuda-nvcc-cu12==12.2.140
nvidia-cuda-nvrtc-cu12==12.2.140
nvidia-cuda-runtime-cu12==12.2.140
nvidia-cudnn-cu12==8.9.4.25
nvidia-cufft-cu12==11.0.8.103
nvidia-curand-cu12==10.3.3.141
nvidia-cusolver-cu12==11.5.2.141
nvidia-cusparse-cu12==12.1.2.141
nvidia-nccl-cu12==2.16.5
nvidia-nvjitlink-cu12==12.2.140
nvidia-nvtx-cu12==12.1.105
oauthlib==3.2.0
opt-einsum==3.3.0
overrides==7.4.0
packaging==23.2
pandas==2.1.2
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
Pillow==10.1.0
platformdirs==3.11.0
plotly==5.18.0
prometheus-client==0.18.0
prompt-toolkit==3.0.39
protobuf==4.23.4
psutil==5.9.6
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==14.0.0
pyasn1==0.5.1
pyasn1-modules==0.3.0
pycparser==2.21
pyfiglet==1.0.2
Pygments==2.16.1
PyGObject==3.42.1
PyJWT==2.3.0
pyparsing==2.4.7
python-apt==2.4.0+ubuntu2
python-dateutil==2.8.2
python-json-logger==2.0.7
pytz==2023.3.post1
PyYAML==5.4.1
pyzmq==25.1.1
qtconsole==5.5.0
QtPy==2.4.1
referencing==0.30.2
requests==2.31.0
requests-oauthlib==1.3.1
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
rich==13.7.0
rpds-py==0.12.0
rsa==4.9
scikit-learn==1.3.2
scipy==1.11.3
seaborn==0.13.0
SecretStorage==3.3.1
Send2Trash==1.8.2
six==1.16.0
sniffio==1.3.0
soupsieve==2.5
stack-data==0.6.3
sympy==1.12
systemd-python==234
tenacity==8.2.3
tensorboard==2.15.1
tensorboard-data-server==0.7.2
tensorflow==2.15.0.post1
tensorflow-estimator==2.15.0
tensorflow-io-gcs-filesystem==0.34.0
termcolor==2.4.0
terminado==0.17.1
threadpoolctl==3.2.0
tinycss2==1.2.1
tomli==2.0.1
torch==2.1.1
torchinfo==1.8.0
torchvision==0.16.1
torchviz==0.0.2
tornado==6.3.3
tqdm==4.66.1
traitlets==5.13.0
triton==2.1.0
types-python-dateutil==2.8.19.14
typing_extensions==4.8.0
tzdata==2023.3
ubuntu-advantage-tools==8001
ufw==0.36.1
unattended-upgrades==0.1
uri-template==1.3.0
urllib3==2.0.7
wadllib==1.3.6
wcwidth==0.2.9
webcolors==1.13
webencodings==0.5.1
websocket-client==1.6.4
Werkzeug==3.0.1
widgetsnbextension==4.0.9
wrapt==1.14.1
xxhash==3.4.1
yarl==1.9.2
zipp==1.0.0