theory DAA_PnC_Unlinkability_Credential_Installation begin /* Protocol: DAA_PnC Properties: PR2 - Unlinkable Credential Installation This Tamarin model is used to verify the privacy of the installation process for the Direct Anonymous Authentication (DAA) based privacy extentsion of the Plug and Charge (PnC) authentication system. The extension is described in the paper "Integrating Privacy into the Electric Vehicle Charging Architecture". It is based on the model from the paper "Formal Analysis and Implementation of a TPM 2.0-based Direct Anonymous Attestation Scheme" accepted to ASIACCS 2020 by Original Authors: Liqun Chen, Surrey Centre for Cyber Security, University of Surrey Christoper J.P. Newton, Surrey Centre for Cyber Security, University of Surrey Ralf Sasse, Department of Computer Science, ETH Zurich Helen Treharne, Surrey Centre for Cyber Security, University of Surrey Stephan Wesemeyer, Surrey Centre for Cyber Security, University of Surrey Jorden Whitefield, Ericsson AB, Finland cf. https://github.com/tamarin-prover/tamarin-prover/tree/dddaccbe981343dde1a321ce0c908585d4525918/examples/asiaccs20-eccDAA time tamarin-prover interactive daa_pnc_unlinkability_credential_installation.spthy\ --quit-on-warning --diff --heuristic=O\ --oraclename=ObsEquOracle_credential_installation.py +RTS -N8 -RTS time tamarin-prover daa_pnc_unlinkability_credential_installation.spthy\ --quit-on-warning --diff --heuristic=O\ --oraclename=ObsEquOracle_credential_installation.py\ --prove=diff_correctness +RTS -N8 -RTS ============================================================================== summary of summaries: analyzed: daa_pnc_unlinkability_credential_installation.spthy RHS : reuse_ADV_Knows_Not (all-traces): verified (125 steps) LHS : reuse_ADV_Knows_Not (all-traces): verified (125 steps) LHS : diff_correctness (exists-trace): verified (8 steps) RHS : diff_correctness (exists-trace): verified (8 steps) DiffLemma: Observational_equivalence : verified (5985 steps) ============================================================================== real 21m42,853s user 63m12,054s sys 40m28,114s */ builtins: asymmetric-encryption, symmetric-encryption, signing//, diffie-hellman//, multiset functions: MAC/2, KDF_EK/1,KDF_a/3, KDF_e/4, multp/2, plus/2, //len16/1, H_SHA256/1, H_n_8/8, curlyK/1, RB/2, RD/2, PkX/2, PkY/2 // Protocol Restrictions (Axioms) restriction equality: "All #i x y . Eq( x, y ) @ i ==> x = y" // Initialisation of the eMSP (the DAA Issuer) and the CCH (acting as CPS) // we do not allow key reveals for the issuer rule Issuer_and_CPS_Init: let I=$Iss pkX=PkX(~x,'P2') pkY=PkY(~y,'P2') in [ Fr(~x) , Fr(~y) , Fr(~cps) ] --[Issuer_Init() , ADV_Knows_Not(~x) , ADV_Knows_Not(~y) , ADV_Knows_Not(~cps) , OnlyOnce('Issuer_Init')]-> [ !Ltk(I,~x, ~y) , Out(<pkX,pkY>) , !LtkCPS($CPS_I,~cps) , Out(pk(~cps)) ] /* In this model, we generate three EV credential requests. One from EV1/TPM1 with the public endorsement key pke1 and one from EV2/TPM2 with the public endorsement key pke2. The eMSP then issues credentials for two of these requests. The adversary obtains the credential request messages, the issued credentials, and the TPMs public information. The question is: Can the adversary distinguish between the two systems, i.e. can he decide wether the two credentials have been issued to the same or different EVs? */ rule EV_Generate_Credential_Requests: let //TPM1 details e1=KDF_EK(~TPM_EK_Seed1) pke1=pk(e1) E_PD1=<'EK_public_data',pke1> PC_PD1=<'PC_public_data',pk(~pc1)> Q1=multp(~f1, 'P1') Q_PD1=<'DAA_public_data', Q1> m1=<pke1,pk(~pc1), Q_PD1, ~res_n1, 'join_Issuer_1'> signed_m1=H_SHA256(<m1, pk(cps), n1>) // In(n) sig_over_m1=sign(signed_m1,~pc1) m_out1=aenc(<sig_over_m1,m1>,pk(cps)) //TPM2 details e2=KDF_EK(~TPM_EK_Seed2) pke2=pk(e2) E_PD2=<'EK_public_data',pke2> PC_PD2=<'PC_public_data',pk(~pc2)> Q2=multp(~f2, 'P1') Q_PD2=<'DAA_public_data', Q2> m2=<pke2,pk(~pc2), Q_PD2, ~res_n2, 'join_Issuer_1'> signed_m2=H_SHA256(<m2, pk(cps), n2>) sig_over_m2=sign(signed_m2,~pc2) m_out2=aenc(<sig_over_m2,m2>,pk(cps)) // Difference property: The adversary cannot distinguish whether the // first credential installation was run with TPM1 or TPM2 CERT_REQ_DIFF=diff(<'req1', m_out1, n1>, <'req2', m_out2, n2>) // Details for third request by TPM2 (same DAA key Q_PD2) m3=<pke2,pk(~pc2), Q_PD2, ~res_n3, 'join_Issuer_1'> signed_m3=H_SHA256(<m3, pk(cps), n3>) // In(n) sig_over_m3=sign(signed_m3,~pc2) m_out3=aenc(<sig_over_m3,m3>,pk(cps)) in [ !LtkCPS(CPS_I, cps) //the issuer's private key , In(n1) , In(n2) , Fr(~TPM_EK_Seed1) , Fr(~pc1) , Fr(~f1) , Fr(~res_n1) , Fr(~TPM_EK_Seed2) , Fr(~pc2) , Fr(~f2) , Fr(~res_n2) , In(n3) , Fr(~res_n3) ] --[ CreateSigmas() , ADV_Knows_Not(~TPM_EK_Seed1) , ADV_Knows_Not(e1) , ADV_Knows_Not(~pc1) , ADV_Knows_Not(~f1) , ADV_Knows_Not(~TPM_EK_Seed2) , ADV_Knows_Not(e2) , ADV_Knows_Not(~pc2) , ADV_Knows_Not(~f2) , OnlyOnce( 'SIGN' ) ]-> [ CertReq(CERT_REQ_DIFF) , CertReq(<'req3', m_out3, n3>) , Out(<'FirstTPM', pke1, PC_PD1, Q_PD1>) , Out(<'SecondTPM', pke2, PC_PD2, Q_PD2>) ] // This rule combines the role of the CPS and eMSP in the credential issuing process // First, the CPS decrypts and validates the request and then the eMSP generates the // DAA credential for the request rule Issuer_Issue_Credentials: let //inputs Q=multp(f, 'P1') Q_PD=<'DAA_public_data', Q> m=<pke,pk(pc), Q_PD, res_n,'join_Issuer_1'> signed_m=H_SHA256(<m, pk(~cps), n>) m_in=aenc(<sig,m>,pk(~cps)) CERT_REQ_DIFF=<req, m_in, n> //inputs from Issuer PK pkX=PkX(~x,'P2') pkY=PkY(~y,'P2') //new values to be calculated A=multp(~r,'P1') B=multp(~y,A) C=plus(multp(~x,A),multp(multp(multp(~r,~x),~y),Q)) D=multp(multp(~r,~y),Q) R_B=RB(~l,'P1') R_D=RD(~l,Q) u=H_n_8('P1', Q, R_B, R_D, A, B, C, D) j=plus(~l,multp(multp(~y,~r),u)) // We use RSA instead of ECDHE keys to keep the model simple s_2_hat=aenc(~s_2_dh, pke) //TODO s_2_temp=~s_2_dh s_2=KDF_e(s_2_temp,'IDENTITY',s_2_hat,pke) Q_N=<'SHA256',H_SHA256(Q_PD)> //the name of the DAA key k_e=KDF_a(s_2,'STORAGE',Q_N) k_h=KDF_a(s_2,'INTEGRITY','NULL') curlyK_2=curlyK(~K_2) curlyK_2_hat=senc(curlyK_2,k_e) //curlyH=MAC(<len16(curlyK_2_hat),curlyK_2_hat, Q_N>,k_h) //TODO len16 curlyH=MAC(<curlyK_2_hat, Q_N>,k_h) C_hat=senc(<A,B,C,D,u,j>,curlyK_2) seed_3_enc=aenc(~seed_3_dh, pke) //TODO seed_3_temp=~seed_3_dh seed_3=KDF_e(seed_3_temp,'DUPLICATE',seed_3_enc,pke) sk_SENSITIVE=<'TPM_ALG_KEYEDHASH', 'NULL', ~obfuscationValue, ~sk_emaid> sk_unique=H_SHA256(<~obfuscationValue, ~sk_emaid>) sk_PD=<'SK_EMAID_public_data', sk_unique> sk_N=<'SHA256',H_SHA256(sk_PD)> sk_k_e=KDF_a(seed_3,'STORAGE',sk_N) sk_k_h=KDF_a(seed_3,'INTEGRITY','NULL') sk_SENSITIVE_enc=senc(sk_SENSITIVE,sk_k_e) sk_SENSITIVE_hmac=MAC(<sk_SENSITIVE_enc, sk_N>,sk_k_h) sk_DUP=<sk_PD, sk_SENSITIVE_hmac, sk_SENSITIVE_enc, seed_3_enc> EMSP_Cert=<I,pkX,pkY> //TODO len16 //m_out=<EMSP_Cert, curlyH, len16(curlyK_2_hat), curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'> m_out=<EMSP_Cert, curlyH, curlyK_2_hat, s_2_hat, C_hat, sk_DUP, res_n, 'Host_CompleteJoin'> sig_m=sign(H_SHA256(m_out),~cps) in [ CertReq(CERT_REQ_DIFF) , !Ltk(I,~x,~y) , Fr(~r) , Fr(~l) , Fr(~s_2_dh) , Fr(~K_2) , Fr(~sk_emaid), Fr(~seed_3_dh), Fr(~obfuscationValue) // for import , !LtkCPS(CPS_I, ~cps) ] --[ Eq(verify(sig,signed_m,pk(pc)), true) , CreateRes(req) , ADV_Knows_Not(~r) , ADV_Knows_Not(~l) , ADV_Knows_Not(~s_2_dh) , ADV_Knows_Not(~K_2) , ADV_Knows_Not(~sk_emaid) , ADV_Knows_Not(~seed_3_dh) , ADV_Knows_Not(~obfuscationValue) , ADV_Knows_Not(curlyK_2) , ADV_Knows_Not(k_e) , ADV_Knows_Not(sk_k_e) , ADV_Knows_Not(k_h) , ADV_Knows_Not(sk_k_h) , OnlyOnce(<'Issuer_Verify_Challenge', req>) ]-> [ // The adversary receives the credential requests (m_in) and // responses (m_out, sig_m) from the eMSP/CPS for either // TPM1 or TPM2 (diff property) and one more for TPM2 Out(<m_in, m_out, sig_m>) ] // Helper lemma for proof generation lemma reuse_ADV_Knows_Not [diff_reuse]: // Adversary does not know data marked with ADV_Knows_Not " All a #i . ADV_Knows_Not(a) @ #i ==> not(Ex #k1 . (KU(a) @k1) ) " lemma diff_correctness [left]: exists-trace " Ex #t1 #t2 #t3 #t4 . Issuer_Init() @ t1 & CreateSigmas() @ t2 & CreateRes('req1') @ t3 & CreateRes('req3') @ t4 & #t1<#t2 & #t2<#t3 & #t3<#t4 //restrict rules to only run once in a trace & (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j) " lemma diff_correctness [right]: exists-trace " Ex #t1 #t2 #t3 #t4 . Issuer_Init() @ t1 & CreateSigmas() @ t2 & CreateRes('req2') @ t3 & CreateRes('req3') @ t4 & #t1<#t2 & #t2<#t3 & #t3<#t4 //restrict rules to only run once in a trace & (All event #i #j . OnlyOnce(event)@i & OnlyOnce(event)@j ==> #i=#j) " end