Skip to content
Snippets Groups Projects
  • Cherry Zhang's avatar
    88382a9f
    [dev.link] cmd/link: stream out external relocations on AMD64 ELF · 88382a9f
    Cherry Zhang authored
    Currently, when external linking, in relocsym (in asmb pass), we
    convert Go relocations to an in-memory representation of external
    relocations, and then in asmb2 pass we write them out to the
    output file. This is not memory efficient.
    
    This CL makes it not do the conversion but directly stream out
    the external relocations based on Go relocations. Currently only
    do this on AMD64 ELF systems.
    
    This reduces memory usage, but makes the asmb2 pass a little
    slower.
    
    Linking cmd/compile with external linking:
    
    name             old time/op    new time/op    delta
    Asmb_GC            83.8ms ± 7%    70.4ms ± 4%  -16.03%  (p=0.008 n=5+5)
    Asmb2_GC           95.6ms ± 4%   118.2ms ± 5%  +23.65%  (p=0.008 n=5+5)
    TotalTime_GC        1.59s ± 2%     1.62s ± 1%     ~     (p=0.151 n=5+5)
    
    name             old alloc/op   new alloc/op   delta
    Asmb_GC            26.0MB ± 0%     4.1MB ± 0%  -84.15%  (p=0.008 n=5+5)
    Asmb2_GC           8.19MB ± 0%    8.18MB ± 0%     ~     (p=0.222 n=5+5)
    
    name             old live-B     new live-B     delta
    Asmb_GC             49.2M ± 0%     27.4M ± 0%  -44.38%  (p=0.008 n=5+5)
    Asmb2_GC            51.5M ± 0%     29.7M ± 0%  -42.33%  (p=0.008 n=5+5)
    
    TODO: figure out what is slow. Possible improvements:
    - Remove redundant work in relocsym.
    - Maybe there is a better representation for external relocations
      now.
    - Fine-grained parallelism in emitting external relocations.
    - The old elfrelocsect only iterates over external relocations,
      now we iterate over all relocations. Is it too many?
    
    Change-Id: Ib0a8ee8c88d65864c62b89a8d634614f7f2c813e
    Reviewed-on: https://go-review.googlesource.com/c/go/+/242603
    
    
    Run-TryBot: Cherry Zhang <cherryyz@google.com>
    TryBot-Result: Gobot Gobot <gobot@golang.org>
    Reviewed-by: default avatarJeremy Faller <jeremy@golang.org>
    88382a9f
    History
    [dev.link] cmd/link: stream out external relocations on AMD64 ELF
    Cherry Zhang authored
    Currently, when external linking, in relocsym (in asmb pass), we
    convert Go relocations to an in-memory representation of external
    relocations, and then in asmb2 pass we write them out to the
    output file. This is not memory efficient.
    
    This CL makes it not do the conversion but directly stream out
    the external relocations based on Go relocations. Currently only
    do this on AMD64 ELF systems.
    
    This reduces memory usage, but makes the asmb2 pass a little
    slower.
    
    Linking cmd/compile with external linking:
    
    name             old time/op    new time/op    delta
    Asmb_GC            83.8ms ± 7%    70.4ms ± 4%  -16.03%  (p=0.008 n=5+5)
    Asmb2_GC           95.6ms ± 4%   118.2ms ± 5%  +23.65%  (p=0.008 n=5+5)
    TotalTime_GC        1.59s ± 2%     1.62s ± 1%     ~     (p=0.151 n=5+5)
    
    name             old alloc/op   new alloc/op   delta
    Asmb_GC            26.0MB ± 0%     4.1MB ± 0%  -84.15%  (p=0.008 n=5+5)
    Asmb2_GC           8.19MB ± 0%    8.18MB ± 0%     ~     (p=0.222 n=5+5)
    
    name             old live-B     new live-B     delta
    Asmb_GC             49.2M ± 0%     27.4M ± 0%  -44.38%  (p=0.008 n=5+5)
    Asmb2_GC            51.5M ± 0%     29.7M ± 0%  -42.33%  (p=0.008 n=5+5)
    
    TODO: figure out what is slow. Possible improvements:
    - Remove redundant work in relocsym.
    - Maybe there is a better representation for external relocations
      now.
    - Fine-grained parallelism in emitting external relocations.
    - The old elfrelocsect only iterates over external relocations,
      now we iterate over all relocations. Is it too many?
    
    Change-Id: Ib0a8ee8c88d65864c62b89a8d634614f7f2c813e
    Reviewed-on: https://go-review.googlesource.com/c/go/+/242603
    
    
    Run-TryBot: Cherry Zhang <cherryyz@google.com>
    TryBot-Result: Gobot Gobot <gobot@golang.org>
    Reviewed-by: default avatarJeremy Faller <jeremy@golang.org>
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
loader.go 78.44 KiB
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package loader

import (
	"bytes"
	"cmd/internal/bio"
	"cmd/internal/goobj2"
	"cmd/internal/obj"
	"cmd/internal/objabi"
	"cmd/internal/sys"
	"cmd/link/internal/sym"
	"debug/elf"
	"fmt"
	"log"
	"math/bits"
	"os"
	"sort"
	"strings"
)

var _ = fmt.Print

// Sym encapsulates a global symbol index, used to identify a specific
// Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
type Sym int

// Relocs encapsulates the set of relocations on a given symbol; an
// instance of this type is returned by the Loader Relocs() method.
type Relocs struct {
	rs []goobj2.Reloc

	li uint32   // local index of symbol whose relocs we're examining
	r  *oReader // object reader for containing package
	l  *Loader  // loader
}

// Reloc contains the payload for a specific relocation.
// TODO: replace this with sym.Reloc, once we change the
// relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc.
type Reloc struct {
	Off  int32            // offset to rewrite
	Size uint8            // number of bytes to rewrite: 0, 1, 2, or 4
	Type objabi.RelocType // the relocation type
	Add  int64            // addend
	Sym  Sym              // global index of symbol the reloc addresses
}

// ExtReloc contains the payload for an external relocation.
type ExtReloc struct {
	Idx  int // index of the original relocation
	Xsym Sym
	Xadd int64
}

// ExtRelocView is a view of an external relocation.
// It is intended to be constructed on the fly, such as ExtRelocs.At.
// It is not the data structure used to store the payload internally.
type ExtRelocView struct {
	Reloc2
	ExtReloc
}

// Reloc2 holds a "handle" to access a relocation record from an
// object file.
type Reloc2 struct {
	*goobj2.Reloc
	r *oReader
	l *Loader

	// External reloc types may not fit into a uint8 which the Go object file uses.
	// Store it here, instead of in the byte of goobj2.Reloc2.
	// For Go symbols this will always be zero.
	// goobj2.Reloc2.Type() + typ is always the right type, for both Go and external
	// symbols.
	typ objabi.RelocType
}

func (rel Reloc2) Type() objabi.RelocType { return objabi.RelocType(rel.Reloc.Type()) + rel.typ }
func (rel Reloc2) Sym() Sym               { return rel.l.resolve(rel.r, rel.Reloc.Sym()) }
func (rel Reloc2) SetSym(s Sym)           { rel.Reloc.SetSym(goobj2.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) }

func (rel Reloc2) SetType(t objabi.RelocType) {
	if t != objabi.RelocType(uint8(t)) {
		panic("SetType: type doesn't fit into Reloc2")
	}
	rel.Reloc.SetType(uint8(t))
	if rel.typ != 0 {
		// should use SymbolBuilder.SetRelocType
		panic("wrong method to set reloc type")
	}
}

// Aux2 holds a "handle" to access an aux symbol record from an
// object file.
type Aux2 struct {
	*goobj2.Aux
	r *oReader
	l *Loader
}

func (a Aux2) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) }

// oReader is a wrapper type of obj.Reader, along with some
// extra information.
type oReader struct {
	*goobj2.Reader
	unit         *sym.CompilationUnit
	version      int    // version of static symbol
	flags        uint32 // read from object file
	pkgprefix    string
	syms         []Sym  // Sym's global index, indexed by local index
	ndef         int    // cache goobj2.Reader.NSym()
	nhashed64def int    // cache goobj2.Reader.NHashed64Def()
	nhasheddef   int    // cache goobj2.Reader.NHashedDef()
	objidx       uint32 // index of this reader in the objs slice
}

// Total number of defined symbols (package symbols, hashed symbols, and
// non-package symbols).
func (r *oReader) NAlldef() int { return r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef() }

type objIdx struct {
	r *oReader
	i Sym // start index
}

// objSym represents a symbol in an object file. It is a tuple of
// the object and the symbol's local index.
// For external symbols, objidx is the index of l.extReader (extObj),
// s is its index into the payload array.
// {0, 0} represents the nil symbol.
type objSym struct {
	objidx uint32 // index of the object (in l.objs array)
	s      uint32 // local index
}

type nameVer struct {
	name string
	v    int
}

type Bitmap []uint32

// set the i-th bit.
func (bm Bitmap) Set(i Sym) {
	n, r := uint(i)/32, uint(i)%32
	bm[n] |= 1 << r
}

// unset the i-th bit.
func (bm Bitmap) Unset(i Sym) {
	n, r := uint(i)/32, uint(i)%32
	bm[n] &^= (1 << r)
}

// whether the i-th bit is set.
func (bm Bitmap) Has(i Sym) bool {
	n, r := uint(i)/32, uint(i)%32
	return bm[n]&(1<<r) != 0
}

// return current length of bitmap in bits.
func (bm Bitmap) Len() int {
	return len(bm) * 32
}

// return the number of bits set.
func (bm Bitmap) Count() int {
	s := 0
	for _, x := range bm {
		s += bits.OnesCount32(x)
	}
	return s
}

func MakeBitmap(n int) Bitmap {
	return make(Bitmap, (n+31)/32)
}

// growBitmap insures that the specified bitmap has enough capacity,
// reallocating (doubling the size) if needed.
func growBitmap(reqLen int, b Bitmap) Bitmap {
	curLen := b.Len()
	if reqLen > curLen {
		b = append(b, MakeBitmap(reqLen+1-curLen)...)
	}
	return b
}

type symSizeAlign struct {
	sym   Sym
	size  uint32
	align uint32
}

// A Loader loads new object files and resolves indexed symbol references.
//
// Notes on the layout of global symbol index space:
//
// - Go object files are read before host object files; each Go object
//   read adds its defined package symbols to the global index space.
//   Nonpackage symbols are not yet added.
//
// - In loader.LoadNonpkgSyms, add non-package defined symbols and
//   references in all object files to the global index space.
//
// - Host object file loading happens; the host object loader does a
//   name/version lookup for each symbol it finds; this can wind up
//   extending the external symbol index space range. The host object
//   loader stores symbol payloads in loader.payloads using SymbolBuilder.
//
// - Each symbol gets a unique global index. For duplicated and
//   overwriting/overwritten symbols, the second (or later) appearance
//   of the symbol gets the same global index as the first appearance.
type Loader struct {
	start       map[*oReader]Sym // map from object file to its start index
	objs        []objIdx         // sorted by start index (i.e. objIdx.i)
	extStart    Sym              // from this index on, the symbols are externally defined
	builtinSyms []Sym            // global index of builtin symbols

	objSyms []objSym // global index mapping to local index

	hashed64Syms  map[uint64]symSizeAlign          // short hashed (content-addressable) symbols, keyed by content hash
	hashedSyms    map[goobj2.HashType]symSizeAlign // hashed (content-addressable) symbols, keyed by content hash
	symsByName    [2]map[string]Sym                // map symbol name to index, two maps are for ABI0 and ABIInternal
	extStaticSyms map[nameVer]Sym                  // externally defined static symbols, keyed by name

	extReader    *oReader // a dummy oReader, for external symbols
	payloadBatch []extSymPayload
	payloads     []*extSymPayload // contents of linker-materialized external syms
	values       []int64          // symbol values, indexed by global sym index

	sects    []*sym.Section // sections
	symSects []uint16       // symbol's section, index to sects array

	align []uint8 // symbol 2^N alignment, indexed by global index

	outdata   [][]byte     // symbol's data in the output buffer
	extRelocs [][]ExtReloc // symbol's external relocations

	itablink         map[Sym]struct{} // itablink[j] defined if j is go.itablink.*
	deferReturnTramp map[Sym]bool     // whether the symbol is a trampoline of a deferreturn call

	objByPkg map[string]*oReader // map package path to its Go object reader

	anonVersion int // most recently assigned ext static sym pseudo-version

	// Bitmaps and other side structures used to store data used to store
	// symbol flags/attributes; these are to be accessed via the
	// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
	// visit the comments on these methods for more details on the
	// semantics / interpretation of the specific flags or attribute.
	attrReachable        Bitmap // reachable symbols, indexed by global index
	attrOnList           Bitmap // "on list" symbols, indexed by global index
	attrLocal            Bitmap // "local" symbols, indexed by global index
	attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by global idx
	attrUsedInIface      Bitmap // "used in interface" symbols, indexed by global idx
	attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index
	attrDuplicateOK      Bitmap // dupOK symbols, indexed by ext sym index
	attrShared           Bitmap // shared symbols, indexed by ext sym index
	attrExternal         Bitmap // external symbols, indexed by ext sym index

	attrReadOnly         map[Sym]bool     // readonly data for this sym
	attrTopFrame         map[Sym]struct{} // top frame symbols
	attrSpecial          map[Sym]struct{} // "special" frame symbols
	attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
	attrCgoExportStatic  map[Sym]struct{} // "cgo_export_static" symbols
	generatedSyms        map[Sym]struct{} // symbols that generate their content

	// Outer and Sub relations for symbols.
	// TODO: figure out whether it's more efficient to just have these
	// as fields on extSymPayload (note that this won't be a viable
	// strategy if somewhere in the linker we set sub/outer for a
	// non-external sym).
	outer map[Sym]Sym
	sub   map[Sym]Sym
	dynimplib   map[Sym]string      // stores Dynimplib symbol attribute
	dynimpvers  map[Sym]string      // stores Dynimpvers symbol attribute
	localentry  map[Sym]uint8       // stores Localentry symbol attribute
	extname     map[Sym]string      // stores Extname symbol attribute
	elfType     map[Sym]elf.SymType // stores elf type symbol property
	elfSym      map[Sym]int32       // stores elf sym symbol property
	localElfSym map[Sym]int32       // stores "local" elf sym symbol property
	symPkg      map[Sym]string      // stores package for symbol, or library for shlib-derived syms
	plt         map[Sym]int32       // stores dynimport for pe objects
	got         map[Sym]int32       // stores got for pe objects
	dynid       map[Sym]int32       // stores Dynid for symbol

	relocVariant map[relocId]sym.RelocVariant // stores variant relocs

	// Used to implement field tracking; created during deadcode if
	// field tracking is enabled. Reachparent[K] contains the index of
	// the symbol that triggered the marking of symbol K as live.
	Reachparent []Sym

	flags uint32

	strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled

	elfsetstring elfsetstringFunc

	errorReporter *ErrorReporter

	npkgsyms int // number of package symbols, for accounting
}

const (
	pkgDef = iota
	hashed64Def
	hashedDef
	nonPkgDef
	nonPkgRef
)

// objidx
const (
	nilObj = iota
	extObj
	goObjStart
)

type elfsetstringFunc func(str string, off int)

// extSymPayload holds the payload (data + relocations) for linker-synthesized
// external symbols (note that symbol value is stored in a separate slice).
type extSymPayload struct {
	name     string // TODO: would this be better as offset into str table?
	size     int64
	ver      int
	kind     sym.SymKind
	objidx   uint32 // index of original object if sym made by cloneToExternal
	relocs   []goobj2.Reloc
	reltypes []objabi.RelocType // relocation types
	data     []byte
	auxs     []goobj2.Aux
}

const (
	// Loader.flags
	FlagStrictDups = 1 << iota
)

func NewLoader(flags uint32, elfsetstring elfsetstringFunc, reporter *ErrorReporter) *Loader {
	nbuiltin := goobj2.NBuiltin()
	extReader := &oReader{objidx: extObj}
	ldr := &Loader{
		start:                make(map[*oReader]Sym),
		objs:                 []objIdx{{}, {extReader, 0}}, // reserve index 0 for nil symbol, 1 for external symbols
		objSyms:              make([]objSym, 1, 100000),    // reserve index 0 for nil symbol
		extReader:            extReader,
		hashed64Syms:         make(map[uint64]symSizeAlign, 10000),                                        // TODO: adjust preallocation sizes
		hashedSyms:           make(map[goobj2.HashType]symSizeAlign, 20000),                               // TODO: adjust preallocation sizes
		symsByName:           [2]map[string]Sym{make(map[string]Sym, 80000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols
		objByPkg:             make(map[string]*oReader),
		outer:                make(map[Sym]Sym),
		sub:                  make(map[Sym]Sym),
		dynimplib:            make(map[Sym]string),
		dynimpvers:           make(map[Sym]string),
		localentry:           make(map[Sym]uint8),
		extname:              make(map[Sym]string),
		attrReadOnly:         make(map[Sym]bool),
		elfType:              make(map[Sym]elf.SymType),
		elfSym:               make(map[Sym]int32),
		localElfSym:          make(map[Sym]int32),
		symPkg:               make(map[Sym]string),
		plt:                  make(map[Sym]int32),
		got:                  make(map[Sym]int32),
		dynid:                make(map[Sym]int32),
		attrTopFrame:         make(map[Sym]struct{}),
		attrSpecial:          make(map[Sym]struct{}),
		attrCgoExportDynamic: make(map[Sym]struct{}),
		attrCgoExportStatic:  make(map[Sym]struct{}),
		generatedSyms:        make(map[Sym]struct{}),
		itablink:             make(map[Sym]struct{}),
		deferReturnTramp:     make(map[Sym]bool),
		extStaticSyms:        make(map[nameVer]Sym),
		builtinSyms:          make([]Sym, nbuiltin),
		flags:                flags,
		elfsetstring:         elfsetstring,
		errorReporter:        reporter,
		sects:                []*sym.Section{nil}, // reserve index 0 for nil section
	}
	reporter.ldr = ldr
	return ldr
}

// Add object file r, return the start index.
func (l *Loader) addObj(pkg string, r *oReader) Sym {
	if _, ok := l.start[r]; ok {
		panic("already added")
	}
	pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
	if _, ok := l.objByPkg[pkg]; !ok {
		l.objByPkg[pkg] = r
	}
	i := Sym(len(l.objSyms))
	l.start[r] = i
	l.objs = append(l.objs, objIdx{r, i})
	return i
}

// Add a symbol from an object file, return the global index and whether it is added.
// If the symbol already exist, it returns the index of that symbol.
func (l *Loader) addSym(name string, ver int, r *oReader, li uint32, kind int, osym *goobj2.Sym) (Sym, bool) {
	if l.extStart != 0 {
		panic("addSym called after external symbol is created")
	}
	i := Sym(len(l.objSyms))
	addToGlobal := func() {
		l.objSyms = append(l.objSyms, objSym{r.objidx, li})
	}
	if name == "" && kind != hashed64Def && kind != hashedDef {
		addToGlobal()
		return i, true // unnamed aux symbol
	}
	if ver == r.version {
		// Static symbol. Add its global index but don't
		// add to name lookup table, as it cannot be
		// referenced by name.
		addToGlobal()
		return i, true
	}
	switch kind {
	case pkgDef:
		// Defined package symbols cannot be dup to each other.
		// We load all the package symbols first, so we don't need
		// to check dup here.
		// We still add it to the lookup table, as it may still be
		// referenced by name (e.g. through linkname).
		l.symsByName[ver][name] = i
		addToGlobal()
		return i, true
	case hashed64Def:
		// Hashed (content-addressable) symbol. Check the hash
		// but don't add to name lookup table, as they are not
		// referenced by name. Also no need to do overwriting
		// check, as same hash indicates same content.
		hash := r.Hash64(li - uint32(r.ndef))
		siz := osym.Siz()
		align := osym.Align()
		if s, existed := l.hashed64Syms[hash]; existed {
			// For short symbols, the content hash is the identity function of the
			// 8 bytes, and trailing zeros doesn't change the hash value, e.g.
			// hash("A") == hash("A\0\0\0").
			// So when two symbols have the same hash, we need to use the one with
			// larget size.
			if siz <= s.size {
				if align > s.align { // we need to use the biggest alignment
					l.SetSymAlign(s.sym, int32(align))
					l.hashed64Syms[hash] = symSizeAlign{s.sym, s.size, align}
				}
			} else {
				// New symbol has larger size, use the new one. Rewrite the index mapping.
				l.objSyms[s.sym] = objSym{r.objidx, li}
				if align < s.align {
					align = s.align // keep the biggest alignment
					l.SetSymAlign(s.sym, int32(align))
				}
				l.hashed64Syms[hash] = symSizeAlign{s.sym, siz, align}
			}
			return s.sym, false
		}
		l.hashed64Syms[hash] = symSizeAlign{i, siz, align}
		addToGlobal()
		return i, true
	case hashedDef:
		// Hashed (content-addressable) symbol. Check the hash
		// but don't add to name lookup table, as they are not
		// referenced by name. Also no need to do overwriting
		// check, as same hash indicates same content.
		hash := r.Hash(li - uint32(r.ndef+r.nhashed64def))
		if s, existed := l.hashedSyms[*hash]; existed {
			if s.size != osym.Siz() {
				fmt.Printf("hash collision: %v (size %d) and %v (size %d), hash %x\n", l.SymName(s.sym), s.size, osym.Name(r.Reader), osym.Siz(), *hash)
				panic("hash collision")
			}
			if l.flags&FlagStrictDups != 0 {
				l.checkdup(name, r, li, s.sym)
			}
			if a := osym.Align(); a > s.align { // we need to use the biggest alignment
				l.SetSymAlign(s.sym, int32(a))
				l.hashedSyms[*hash] = symSizeAlign{s.sym, s.size, a}
			}
			return s.sym, false
		}
		l.hashedSyms[*hash] = symSizeAlign{i, osym.Siz(), osym.Align()}
		addToGlobal()
		return i, true
	}

	// Non-package (named) symbol. Check if it already exists.
	oldi, existed := l.symsByName[ver][name]
	if !existed {
		l.symsByName[ver][name] = i
		addToGlobal()
		return i, true
	}
	// symbol already exists
	if osym.Dupok() {
		if l.flags&FlagStrictDups != 0 {
			l.checkdup(name, r, li, oldi)
		}
		return oldi, false
	}
	oldr, oldli := l.toLocal(oldi)
	oldsym := oldr.Sym(oldli)
	if oldsym.Dupok() {
		return oldi, false
	}
	overwrite := r.DataSize(li) != 0
	if overwrite {
		// new symbol overwrites old symbol.
		oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
		if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) {
			log.Fatalf("duplicated definition of symbol " + name)
		}
		l.objSyms[oldi] = objSym{r.objidx, li}
	} else {
		// old symbol overwrites new symbol.
		typ := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
		if !typ.IsData() { // only allow overwriting data symbol
			log.Fatalf("duplicated definition of symbol " + name)
		}
	}
	return oldi, true
}

// newExtSym creates a new external sym with the specified
// name/version.
func (l *Loader) newExtSym(name string, ver int) Sym {
	i := Sym(len(l.objSyms))
	if l.extStart == 0 {
		l.extStart = i
	}
	l.growValues(int(i) + 1)
	l.growAttrBitmaps(int(i) + 1)
	pi := l.newPayload(name, ver)
	l.objSyms = append(l.objSyms, objSym{l.extReader.objidx, uint32(pi)})
	l.extReader.syms = append(l.extReader.syms, i)
	return i
}

// LookupOrCreateSym looks up the symbol with the specified name/version,
// returning its Sym index if found. If the lookup fails, a new external
// Sym will be created, entered into the lookup tables, and returned.
func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
	i := l.Lookup(name, ver)
	if i != 0 {
		return i
	}
	i = l.newExtSym(name, ver)
	static := ver >= sym.SymVerStatic || ver < 0
	if static {
		l.extStaticSyms[nameVer{name, ver}] = i
	} else {
		l.symsByName[ver][name] = i
	}
	return i
}

func (l *Loader) IsExternal(i Sym) bool {
	r, _ := l.toLocal(i)
	return l.isExtReader(r)
}

func (l *Loader) isExtReader(r *oReader) bool {
	return r == l.extReader
}

// For external symbol, return its index in the payloads array.
// XXX result is actually not a global index. We (ab)use the Sym type
// so we don't need conversion for accessing bitmaps.
func (l *Loader) extIndex(i Sym) Sym {
	_, li := l.toLocal(i)
	return Sym(li)
}

// Get a new payload for external symbol, return its index in
// the payloads array.
func (l *Loader) newPayload(name string, ver int) int {
	pi := len(l.payloads)
	pp := l.allocPayload()
	pp.name = name
	pp.ver = ver
	l.payloads = append(l.payloads, pp)
	l.growExtAttrBitmaps()
	return pi
}

// getPayload returns a pointer to the extSymPayload struct for an
// external symbol if the symbol has a payload. Will panic if the
// symbol in question is bogus (zero or not an external sym).
func (l *Loader) getPayload(i Sym) *extSymPayload {
	if !l.IsExternal(i) {
		panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
	}
	pi := l.extIndex(i)
	return l.payloads[pi]
}

// allocPayload allocates a new payload.
func (l *Loader) allocPayload() *extSymPayload {
	batch := l.payloadBatch
	if len(batch) == 0 {
		batch = make([]extSymPayload, 1000)
	}
	p := &batch[0]
	l.payloadBatch = batch[1:]
	return p
}

func (ms *extSymPayload) Grow(siz int64) {
	if int64(int(siz)) != siz {
		log.Fatalf("symgrow size %d too long", siz)
	}
	if int64(len(ms.data)) >= siz {
		return
	}
	if cap(ms.data) < int(siz) {
		cl := len(ms.data)
		ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
		ms.data = ms.data[0:cl]
	}
	ms.data = ms.data[:siz]
}
// Convert a local index to a global index.
func (l *Loader) toGlobal(r *oReader, i uint32) Sym {
	return r.syms[i]
}

// Convert a global index to a local index.
func (l *Loader) toLocal(i Sym) (*oReader, uint32) {
	return l.objs[l.objSyms[i].objidx].r, l.objSyms[i].s
}

// Resolve a local symbol reference. Return global index.
func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym {
	var rr *oReader
	switch p := s.PkgIdx; p {
	case goobj2.PkgIdxInvalid:
		// {0, X} with non-zero X is never a valid sym reference from a Go object.
		// We steal this space for symbol references from external objects.
		// In this case, X is just the global index.
		if l.isExtReader(r) {
			return Sym(s.SymIdx)
		}
		if s.SymIdx != 0 {
			panic("bad sym ref")
		}
		return 0
	case goobj2.PkgIdxHashed64:
		i := int(s.SymIdx) + r.ndef
		return r.syms[i]
	case goobj2.PkgIdxHashed:
		i := int(s.SymIdx) + r.ndef + r.nhashed64def
		return r.syms[i]
	case goobj2.PkgIdxNone:
		i := int(s.SymIdx) + r.ndef + r.nhashed64def + r.nhasheddef
		return r.syms[i]
	case goobj2.PkgIdxBuiltin:
		return l.builtinSyms[s.SymIdx]
	case goobj2.PkgIdxSelf:
		rr = r
	default:
		pkg := r.Pkg(int(p))
		var ok bool
		rr, ok = l.objByPkg[pkg]
		if !ok {
			log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib)
		}
	}
	return l.toGlobal(rr, s.SymIdx)
}

// Look up a symbol by name, return global index, or 0 if not found.
// This is more like Syms.ROLookup than Lookup -- it doesn't create
// new symbol.
func (l *Loader) Lookup(name string, ver int) Sym {
	if ver >= sym.SymVerStatic || ver < 0 {
		return l.extStaticSyms[nameVer{name, ver}]
	}
	return l.symsByName[ver][name]
}

// Check that duplicate symbols have same contents.
func (l *Loader) checkdup(name string, r *oReader, li uint32, dup Sym) {
	p := r.Data(li)
	rdup, ldup := l.toLocal(dup)
	pdup := rdup.Data(ldup)
	if bytes.Equal(p, pdup) {
		return
	}
	reason := "same length but different contents"
	if len(p) != len(pdup) {
		reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
	}
	fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)

	// For the moment, allow DWARF subprogram DIEs for
	// auto-generated wrapper functions. What seems to happen
	// here is that we get different line numbers on formal
	// params; I am guessing that the pos is being inherited
	// from the spot where the wrapper is needed.
	allowed := strings.HasPrefix(name, "go.info.go.interface") ||
		strings.HasPrefix(name, "go.info.go.builtin") ||
		strings.HasPrefix(name, "go.debuglines")
	if !allowed {
		l.strictDupMsgs++
	}
}

func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }

// Number of total symbols.
func (l *Loader) NSym() int {
	return len(l.objSyms)
}

// Number of defined Go symbols.
func (l *Loader) NDef() int {
	return int(l.extStart)
}

// Number of reachable symbols.
func (l *Loader) NReachableSym() int {
	return l.attrReachable.Count()
}

// Returns the raw (unpatched) name of the i-th symbol.
func (l *Loader) RawSymName(i Sym) string {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.name
	}
	r, li := l.toLocal(i)
	return r.Sym(li).Name(r.Reader)
}

// Returns the (patched) name of the i-th symbol.
func (l *Loader) SymName(i Sym) string {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.name
	}
	r, li := l.toLocal(i)
	name := r.Sym(li).Name(r.Reader)
	if !r.NeedNameExpansion() {
		return name
	}
	return strings.Replace(name, "\"\".", r.pkgprefix, -1)
}

// Returns the version of the i-th symbol.
func (l *Loader) SymVersion(i Sym) int {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.ver
	}
	r, li := l.toLocal(i)
	return int(abiToVer(r.Sym(li).ABI(), r.version))
}

func (l *Loader) IsFileLocal(i Sym) bool {
	return l.SymVersion(i) >= sym.SymVerStatic
}

// IsFromAssembly returns true if this symbol is derived from an
// object file generated by the Go assembler.
func (l *Loader) IsFromAssembly(i Sym) bool {
	if l.IsExternal(i) {
		return false
	}
	r, _ := l.toLocal(i)
	return r.FromAssembly()
}

// Returns the type of the i-th symbol.
func (l *Loader) SymType(i Sym) sym.SymKind {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp != nil {
			return pp.kind
		}
		return 0
	}
	r, li := l.toLocal(i)
	return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())]
}

// Returns the attributes of the i-th symbol.
func (l *Loader) SymAttr(i Sym) uint8 {
	if l.IsExternal(i) {
		// TODO: do something? External symbols have different representation of attributes.
		// For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be
		// set by external symbol.
		return 0
	}
	r, li := l.toLocal(i)
	return r.Sym(li).Flag()
}

// Returns the size of the i-th symbol.
func (l *Loader) SymSize(i Sym) int64 {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		return pp.size
	}
	r, li := l.toLocal(i)
	return int64(r.Sym(li).Siz())
}

// AttrReachable returns true for symbols that are transitively
// referenced from the entry points. Unreachable symbols are not
// written to the output.
func (l *Loader) AttrReachable(i Sym) bool {
	return l.attrReachable.Has(i)
}

// SetAttrReachable sets the reachability property for a symbol (see
// AttrReachable).
func (l *Loader) SetAttrReachable(i Sym, v bool) {
	if v {
		l.attrReachable.Set(i)
	} else {
		l.attrReachable.Unset(i)
	}
}

// AttrOnList returns true for symbols that are on some list (such as
// the list of all text symbols, or one of the lists of data symbols)
// and is consulted to avoid bugs where a symbol is put on a list
// twice.
func (l *Loader) AttrOnList(i Sym) bool {
	return l.attrOnList.Has(i)
}

// SetAttrOnList sets the "on list" property for a symbol (see
// AttrOnList).
func (l *Loader) SetAttrOnList(i Sym, v bool) {
	if v {
		l.attrOnList.Set(i)
	} else {
		l.attrOnList.Unset(i)
	}
}

// AttrLocal returns true for symbols that are only visible within the
// module (executable or shared library) being linked. This attribute
// is applied to thunks and certain other linker-generated symbols.
func (l *Loader) AttrLocal(i Sym) bool {
	return l.attrLocal.Has(i)
}

// SetAttrLocal the "local" property for a symbol (see AttrLocal above).
func (l *Loader) SetAttrLocal(i Sym, v bool) {
	if v {
		l.attrLocal.Set(i)
	} else {
		l.attrLocal.Unset(i)
	}
}

// AttrUsedInIface returns true for a type symbol that is used in
// an interface.
func (l *Loader) AttrUsedInIface(i Sym) bool {
	return l.attrUsedInIface.Has(i)
}

func (l *Loader) SetAttrUsedInIface(i Sym, v bool) {
	if v {
		l.attrUsedInIface.Set(i)
	} else {
		l.attrUsedInIface.Unset(i)
	}
}

// SymAddr checks that a symbol is reachable, and returns its value.
func (l *Loader) SymAddr(i Sym) int64 {
	if !l.AttrReachable(i) {
		panic("unreachable symbol in symaddr")
	}
	return l.values[i]
}

// AttrNotInSymbolTable returns true for symbols that should not be
// added to the symbol table of the final generated load module.
func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
	return l.attrNotInSymbolTable.Has(i)
}

// SetAttrNotInSymbolTable the "not in symtab" property for a symbol
// (see AttrNotInSymbolTable above).
func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
	if v {
		l.attrNotInSymbolTable.Set(i)
	} else {
		l.attrNotInSymbolTable.Unset(i)
	}
}

// AttrVisibilityHidden symbols returns true for ELF symbols with
// visibility set to STV_HIDDEN. They become local symbols in
// the final executable. Only relevant when internally linking
// on an ELF platform.
func (l *Loader) AttrVisibilityHidden(i Sym) bool {
	if !l.IsExternal(i) {
		return false
	}
	return l.attrVisibilityHidden.Has(l.extIndex(i))
}

// SetAttrVisibilityHidden sets the "hidden visibility" property for a
// symbol (see AttrVisibilityHidden).
func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
	if !l.IsExternal(i) {
		panic("tried to set visibility attr on non-external symbol")
	}
	if v {
		l.attrVisibilityHidden.Set(l.extIndex(i))
	} else {
		l.attrVisibilityHidden.Unset(l.extIndex(i))
	}
}

// AttrDuplicateOK returns true for a symbol that can be present in
// multiple object files.
func (l *Loader) AttrDuplicateOK(i Sym) bool {
	if !l.IsExternal(i) {
		// TODO: if this path winds up being taken frequently, it
		// might make more sense to copy the flag value out of the object
		// into a larger bitmap during preload.
		r, li := l.toLocal(i)
		return r.Sym(li).Dupok()
	}
	return l.attrDuplicateOK.Has(l.extIndex(i))
}

// SetAttrDuplicateOK sets the "duplicate OK" property for an external
// symbol (see AttrDuplicateOK).
func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
	if !l.IsExternal(i) {
		panic("tried to set dupok attr on non-external symbol")
	}
	if v {
		l.attrDuplicateOK.Set(l.extIndex(i))
	} else {
		l.attrDuplicateOK.Unset(l.extIndex(i))
	}
}

// AttrShared returns true for symbols compiled with the -shared option.
func (l *Loader) AttrShared(i Sym) bool {
	if !l.IsExternal(i) {
		// TODO: if this path winds up being taken frequently, it
		// might make more sense to copy the flag value out of the
		// object into a larger bitmap during preload.
		r, _ := l.toLocal(i)
		return r.Shared()
	}
	return l.attrShared.Has(l.extIndex(i))
}

// SetAttrShared sets the "shared" property for an external
// symbol (see AttrShared).
func (l *Loader) SetAttrShared(i Sym, v bool) {
	if !l.IsExternal(i) {
		panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i)))
	}
	if v {
		l.attrShared.Set(l.extIndex(i))
	} else {
		l.attrShared.Unset(l.extIndex(i))
	}
}
// AttrExternal returns true for function symbols loaded from host
// object files.
func (l *Loader) AttrExternal(i Sym) bool {
	if !l.IsExternal(i) {
		return false
	}
	return l.attrExternal.Has(l.extIndex(i))
}

// SetAttrExternal sets the "external" property for an host object
// symbol (see AttrExternal).
func (l *Loader) SetAttrExternal(i Sym, v bool) {
	if !l.IsExternal(i) {
		panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.RawSymName(i)))
	}
	if v {
		l.attrExternal.Set(l.extIndex(i))
	} else {
		l.attrExternal.Unset(l.extIndex(i))
	}
}

// AttrTopFrame returns true for a function symbol that is an entry
// point, meaning that unwinders should stop when they hit this
// function.
func (l *Loader) AttrTopFrame(i Sym) bool {
	_, ok := l.attrTopFrame[i]
	return ok
}

// SetAttrTopFrame sets the "top frame" property for a symbol (see
// AttrTopFrame).
func (l *Loader) SetAttrTopFrame(i Sym, v bool) {
	if v {
		l.attrTopFrame[i] = struct{}{}
	} else {
		delete(l.attrTopFrame, i)
	}
}

// AttrSpecial returns true for a symbols that do not have their
// address (i.e. Value) computed by the usual mechanism of
// data.go:dodata() & data.go:address().
func (l *Loader) AttrSpecial(i Sym) bool {
	_, ok := l.attrSpecial[i]
	return ok
}

// SetAttrSpecial sets the "special" property for a symbol (see
// AttrSpecial).
func (l *Loader) SetAttrSpecial(i Sym, v bool) {
	if v {
		l.attrSpecial[i] = struct{}{}
	} else {
		delete(l.attrSpecial, i)
	}
}

// AttrCgoExportDynamic returns true for a symbol that has been
// specially marked via the "cgo_export_dynamic" compiler directive
// written by cgo (in response to //export directives in the source).
func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
	_, ok := l.attrCgoExportDynamic[i]
	return ok
}

// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportDynamic).
func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
	if v {
		l.attrCgoExportDynamic[i] = struct{}{}
	} else {
		delete(l.attrCgoExportDynamic, i)
	}
}

// AttrCgoExportStatic returns true for a symbol that has been
// specially marked via the "cgo_export_static" directive
// written by cgo.
func (l *Loader) AttrCgoExportStatic(i Sym) bool {
	_, ok := l.attrCgoExportStatic[i]
	return ok
}

// SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol
// (see AttrCgoExportStatic).
func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
	if v {
		l.attrCgoExportStatic[i] = struct{}{}
	} else {
		delete(l.attrCgoExportStatic, i)
	}
}

// IsGeneratedSym returns true if a symbol's been previously marked as a
// generator symbol through the SetIsGeneratedSym. The functions for generator
// symbols are kept in the Link context.
func (l *Loader) IsGeneratedSym(i Sym) bool {
	_, ok := l.generatedSyms[i]
	return ok
}

// SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be
// stored in generated symbols, and a function is registered and called for
// each of these symbols.
func (l *Loader) SetIsGeneratedSym(i Sym, v bool) {
	if !l.IsExternal(i) {
		panic("only external symbols can be generated")
	}
	if v {
		l.generatedSyms[i] = struct{}{}
	} else {
		delete(l.generatedSyms, i)
	}
}

func (l *Loader) AttrCgoExport(i Sym) bool {
	return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i)
}

// AttrReadOnly returns true for a symbol whose underlying data
// is stored via a read-only mmap.
func (l *Loader) AttrReadOnly(i Sym) bool {
	if v, ok := l.attrReadOnly[i]; ok {
		return v
	}
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp.objidx != 0 {
			return l.objs[pp.objidx].r.ReadOnly()
		}
		return false
	}
	r, _ := l.toLocal(i)
	return r.ReadOnly()
}

// SetAttrReadOnly sets the "data is read only" property for a symbol
// (see AttrReadOnly).
func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
	l.attrReadOnly[i] = v
}

// AttrSubSymbol returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
//
// Note that in later stages of the linker, we set Outer(S) to some
// container symbol C, but don't set Sub(C). Thus we have two
// distinct scenarios:
//
// - Outer symbol covers the address ranges of its sub-symbols.
//   Outer.Sub is set in this case.
// - Outer symbol doesn't conver the address ranges. It is zero-sized
//   and doesn't have sub-symbols. In the case, the inner symbol is
//   not actually a "SubSymbol". (Tricky!)
//
// This method returns TRUE only for sub-symbols in the first scenario.
//
// FIXME: would be better to do away with this and have a better way
// to represent container symbols.

func (l *Loader) AttrSubSymbol(i Sym) bool {
	// we don't explicitly store this attribute any more -- return
	// a value based on the sub-symbol setting.
	o := l.OuterSym(i)
	if o == 0 {
		return false
	}
	return l.SubSym(o) != 0
}

// Note that we don't have a 'SetAttrSubSymbol' method in the loader;
// clients should instead use the AddInteriorSym method to establish
// containment relationships for host object symbols.

// Returns whether the i-th symbol has ReflectMethod attribute set.
func (l *Loader) IsReflectMethod(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0
}

// Returns whether the i-th symbol is nosplit.
func (l *Loader) IsNoSplit(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagNoSplit != 0
}

// Returns whether this is a Go type symbol.
func (l *Loader) IsGoType(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagGoType != 0
}

// Returns whether this symbol should be included in typelink.
func (l *Loader) IsTypelink(i Sym) bool {
	return l.SymAttr(i)&goobj2.SymFlagTypelink != 0
}

// Returns whether this is a "go.itablink.*" symbol.
func (l *Loader) IsItabLink(i Sym) bool {
	if _, ok := l.itablink[i]; ok {
		return true
	}
	return false
}

// Return whether this is a trampoline of a deferreturn call.
func (l *Loader) IsDeferReturnTramp(i Sym) bool {
	return l.deferReturnTramp[i]
}

// Set that i is a trampoline of a deferreturn call.
func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) {
	l.deferReturnTramp[i] = v
}

// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
	curLen := len(l.values)
	if reqLen > curLen {
		l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
	}
}

// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
	return l.values[i]
}

// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
	l.values[i] = val
}

// AddToSymValue adds to the value of the i-th symbol. i is the global index.
func (l *Loader) AddToSymValue(i Sym, val int64) {
	l.values[i] += val
}

// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp != nil {
			return pp.data
		}
		return nil
	}
	r, li := l.toLocal(i)
	return r.Data(li)
}

// Returns the data of the i-th symbol in the output buffer.
func (l *Loader) OutData(i Sym) []byte {
	if int(i) < len(l.outdata) && l.outdata[i] != nil {
		return l.outdata[i]
	}
	return l.Data(i)
}

// SetOutData sets the position of the data of the i-th symbol in the output buffer.
// i is global index.
func (l *Loader) SetOutData(i Sym, data []byte) {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp != nil {
			pp.data = data
			return
		}
	}
	l.outdata[i] = data
}

// InitOutData initializes the slice used to store symbol output data.
func (l *Loader) InitOutData() {
	l.outdata = make([][]byte, l.extStart)
}

// SetExtRelocs sets the external relocations of the i-th symbol. i is global index.
func (l *Loader) SetExtRelocs(i Sym, relocs []ExtReloc) {
	l.extRelocs[i] = relocs
}

// InitExtRelocs initialize the slice used to store external relocations.
func (l *Loader) InitExtRelocs() {
	l.extRelocs = make([][]ExtReloc, l.NSym())
}

// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
	if int(i) >= len(l.align) {
		// align is extended lazily -- it the sym in question is
		// outside the range of the existing slice, then we assume its
		// alignment has not yet been set.
		return 0
	}
	// TODO: would it make sense to return an arch-specific
	// alignment depending on section type? E.g. STEXT => 32,
	// SDATA => 1, etc?
	abits := l.align[i]
	if abits == 0 {
		return 0
	}
	return int32(1 << (abits - 1))
}

// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
	// Reject nonsense alignments.
	if align < 0 || align&(align-1) != 0 {
		panic("bad alignment value")
	}
	if int(i) >= len(l.align) {
		l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...)
	}
	if align == 0 {
		l.align[i] = 0
	}
	l.align[i] = uint8(bits.Len32(uint32(align)))
}

// SymValue returns the section of the i-th symbol. i is global index.
func (l *Loader) SymSect(i Sym) *sym.Section {
	if int(i) >= len(l.symSects) {
		// symSects is extended lazily -- it the sym in question is
		// outside the range of the existing slice, then we assume its
		// section has not yet been set.
		return nil
	}
	return l.sects[l.symSects[i]]
}

// SetSymSect sets the section of the i-th symbol. i is global index.
func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
	if int(i) >= len(l.symSects) {
		l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
	}
	l.symSects[i] = sect.Index
}

// growSects grows the slice used to store symbol sections.
func (l *Loader) growSects(reqLen int) {
	curLen := len(l.symSects)
	if reqLen > curLen {
		l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...)
	}
}

// NewSection creates a new (output) section.
func (l *Loader) NewSection() *sym.Section {
	sect := new(sym.Section)
	idx := len(l.sects)
	if idx != int(uint16(idx)) {
		panic("too many sections created")
	}
	sect.Index = uint16(idx)
	l.sects = append(l.sects, sect)
	return sect
}

// SymDynImplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
	return l.dynimplib[i]
}

// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetDynimplib")
	}
	if value == "" {
		delete(l.dynimplib, i)
	} else {
		l.dynimplib[i] = value
	}
}

// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
	return l.dynimpvers[i]
}

// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetDynimpvers")
	}
	if value == "" {
		delete(l.dynimpvers, i)
	} else {
		l.dynimpvers[i] = value
	}
}

// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
	if s, ok := l.extname[i]; ok {
		return s
	}
	return l.SymName(i)
}

// SetSymExtname sets the  "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetExtname")
	}
	if value == "" {
		delete(l.extname, i)
	} else {
		l.extname[i] = value
	}
}

// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
	if et, ok := l.elfType[i]; ok {
		return et
	}
	return elf.STT_NOTYPE
}

// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymElfType")
	}
	if et == elf.STT_NOTYPE {
		delete(l.elfType, i)
	} else {
		l.elfType[i] = et
	}
}

// SymElfSym returns the ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymElfSym(i Sym) int32 {
	return l.elfSym[i]
}

// SetSymElfSym sets the elf symbol index for a symbol.
func (l *Loader) SetSymElfSym(i Sym, es int32) {
	if i == 0 {
		panic("bad sym index")
	}
	if es == 0 {
		delete(l.elfSym, i)
	} else {
		l.elfSym[i] = es
	}
}

// SymLocalElfSym returns the "local" ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymLocalElfSym(i Sym) int32 {
	return l.localElfSym[i]
}

// SetSymLocalElfSym sets the "local" elf symbol index for a symbol.
func (l *Loader) SetSymLocalElfSym(i Sym, es int32) {
	if i == 0 {
		panic("bad sym index")
	}
	if es == 0 {
		delete(l.localElfSym, i)
	} else {
		l.localElfSym[i] = es
	}
}

// SymPlt returns the plt value for pe symbols.
func (l *Loader) SymPlt(s Sym) int32 {
	if v, ok := l.plt[s]; ok {
		return v
	}
	return -1
}

// SetPlt sets the plt value for pe symbols.
func (l *Loader) SetPlt(i Sym, v int32) {
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol for SetPlt")
	}
	if v == -1 {
		delete(l.plt, i)
	} else {
		l.plt[i] = v
	}
}

// SymGot returns the got value for pe symbols.
func (l *Loader) SymGot(s Sym) int32 {
	if v, ok := l.got[s]; ok {
		return v
	}
	return -1
}

// SetGot sets the got value for pe symbols.
func (l *Loader) SetGot(i Sym, v int32) {
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol for SetGot")
	}
	if v == -1 {
		delete(l.got, i)
	} else {
		l.got[i] = v
	}
}

// SymDynid returns the "dynid" property for the specified symbol.
func (l *Loader) SymDynid(i Sym) int32 {
	if s, ok := l.dynid[i]; ok {
		return s
	}
	return -1
}

// SetSymDynid sets the "dynid" property for a symbol.
func (l *Loader) SetSymDynid(i Sym, val int32) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymDynid")
	}
	if val == -1 {
		delete(l.dynid, i)
	} else {
		l.dynid[i] = val
	}
}

// DynIdSyms returns the set of symbols for which dynID is set to an
// interesting (non-default) value. This is expected to be a fairly
// small set.
func (l *Loader) DynidSyms() []Sym {
	sl := make([]Sym, 0, len(l.dynid))
	for s := range l.dynid {
		sl = append(sl, s)
	}
	sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] })
	return sl
}

// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym {
	var r *oReader
	var auxs []goobj2.Aux
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		r = l.objs[pp.objidx].r
		auxs = pp.auxs
	} else {
		var li uint32
		r, li = l.toLocal(i)
		auxs = r.Auxs(li)
	}
	for j := range auxs {
		a := &auxs[j]
		switch a.Type() {
		case goobj2.AuxGotype:
			return l.resolve(r, a.Sym())
		}
	}
	return 0
}

// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp.objidx != 0 {
			r := l.objs[pp.objidx].r
			return r.unit
		}
		return nil
	}
	r, _ := l.toLocal(i)
	return r.unit
}

// SymPkg returns the package where the symbol came from (for
// regular compiler-generated Go symbols), but in the case of
// building with "-linkshared" (when a symbol is read from a
// shared library), will hold the library name.
// NOTE: this correspondes to sym.Symbol.File field.
func (l *Loader) SymPkg(i Sym) string {
	if f, ok := l.symPkg[i]; ok {
		return f
	}
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp.objidx != 0 {
			r := l.objs[pp.objidx].r
			return r.unit.Lib.Pkg
		}
		return ""
	}
	r, _ := l.toLocal(i)
	return r.unit.Lib.Pkg
}

// SetSymPkg sets the package/library for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymPkg(i Sym, pkg string) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymPkg")
	}
	l.symPkg[i] = pkg
}

// SymLocalentry returns the "local entry" value for the specified
// symbol.
func (l *Loader) SymLocalentry(i Sym) uint8 {
	return l.localentry[i]
}

// SetSymLocalentry sets the "local entry" attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
	// reject bad symbols
	if i >= Sym(len(l.objSyms)) || i == 0 {
		panic("bad symbol index in SetSymLocalentry")
	}
	if value == 0 {
		delete(l.localentry, i)
	} else {
		l.localentry[i] = value
	}
}

// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
	if l.IsExternal(i) {
		return 0
	}
	r, li := l.toLocal(i)
	return r.NAux(li)
}

// Returns the "handle" to the j-th aux symbol of the i-th symbol.
func (l *Loader) Aux2(i Sym, j int) Aux2 {
	if l.IsExternal(i) {
		return Aux2{}
	}
	r, li := l.toLocal(i)
	if j >= r.NAux(li) {
		return Aux2{}
	}
	return Aux2{r.Aux(li, j), r, l}
}

// GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
// symbols associated with a given function symbol.  Prior to the
// introduction of the loader, this was done purely using name
// lookups, e.f. for function with name XYZ we would then look up
// go.info.XYZ, etc.
func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
	if l.SymType(fnSymIdx) != sym.STEXT {
		log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
	}
	if l.IsExternal(fnSymIdx) {
		// Current expectation is that any external function will
		// not have auxsyms.
		return
	}
	r, li := l.toLocal(fnSymIdx)
	auxs := r.Auxs(li)
	for i := range auxs {
		a := &auxs[i]
		switch a.Type() {
		case goobj2.AuxDwarfInfo:
			auxDwarfInfo = l.resolve(r, a.Sym())
			if l.SymType(auxDwarfInfo) != sym.SDWARFFCN {
				panic("aux dwarf info sym with wrong type")
			}
		case goobj2.AuxDwarfLoc:
			auxDwarfLoc = l.resolve(r, a.Sym())
			if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
				panic("aux dwarf loc sym with wrong type")
			}
		case goobj2.AuxDwarfRanges:
			auxDwarfRanges = l.resolve(r, a.Sym())
			if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
				panic("aux dwarf ranges sym with wrong type")
			}
		case goobj2.AuxDwarfLines:
			auxDwarfLines = l.resolve(r, a.Sym())
			if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
				panic("aux dwarf lines sym with wrong type")
			}
		}
	}
	return
}

// AddInteriorSym sets up 'interior' as an interior symbol of
// container/payload symbol 'container'. An interior symbol does not
// itself have data, but gives a name to a subrange of the data in its
// container symbol. The container itself may or may not have a name.
// This method is intended primarily for use in the host object
// loaders, to capture the semantics of symbols and sections in an
// object file. When reading a host object file, we'll typically
// encounter a static section symbol (ex: ".text") containing content
// for a collection of functions, then a series of ELF (or macho, etc)
// symbol table entries each of which points into a sub-section
// (offset and length) of its corresponding container symbol. Within
// the go linker we create a loader.Sym for the container (which is
// expected to have the actual content/payload) and then a set of
// interior loader.Sym's that point into a portion of the container.
func (l *Loader) AddInteriorSym(container Sym, interior Sym) {
	// Container symbols are expected to have content/data.
	// NB: this restriction may turn out to be too strict (it's possible
	// to imagine a zero-sized container with an interior symbol pointing
	// into it); it's ok to relax or remove it if we counter an
	// oddball host object that triggers this.
	if l.SymSize(container) == 0 && len(l.Data(container)) == 0 {
		panic("unexpected empty container symbol")
	}
	// The interior symbols for a container are not expected to have
	// content/data or relocations.
	if len(l.Data(interior)) != 0 {
		panic("unexpected non-empty interior symbol")
	}
	// Interior symbol is expected to be in the symbol table.
	if l.AttrNotInSymbolTable(interior) {
		panic("interior symbol must be in symtab")
	}
	// Only a single level of containment is allowed.
	if l.OuterSym(container) != 0 {
		panic("outer has outer itself")
	}
	// Interior sym should not already have a sibling.
	if l.SubSym(interior) != 0 {
		panic("sub set for subsym")
	}
	// Interior sym should not already point at a container.
	if l.OuterSym(interior) != 0 {
		panic("outer already set for subsym")
	}
	l.sub[interior] = l.sub[container]
	l.sub[container] = interior
	l.outer[interior] = container
}

// OuterSym gets the outer symbol for host object loaded symbols.
func (l *Loader) OuterSym(i Sym) Sym {
	// FIXME: add check for isExternal?
	return l.outer[i]
}
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
	// NB: note -- no check for l.isExternal(), since I am pretty sure
	// that later phases in the linker set subsym for "type." syms
	return l.sub[i]
}

// SetCarrierSym declares that 'c' is the carrier or container symbol
// for 's'. Carrier symbols are used in the linker to as a container
// for a collection of sub-symbols where the content of the
// sub-symbols is effectively concatenated to form the content of the
// carrier. The carrier is given a name in the output symbol table
// while the sub-symbol names are not. For example, the Go compiler
// emits named string symbols (type SGOSTRING) when compiling a
// package; after being deduplicated, these symbols are collected into
// a single unit by assigning them a new carrier symbol named
// "go.string.*" (which appears in the final symbol table for the
// output load module).
func (l *Loader) SetCarrierSym(s Sym, c Sym) {
	if c == 0 {
		panic("invalid carrier in SetCarrierSym")
	}
	if s == 0 {
		panic("invalid sub-symbol in SetCarrierSym")
	}
	// Carrier symbols are not expected to have content/data. It is
	// ok for them to have non-zero size (to allow for use of generator
	// symbols).
	if len(l.Data(c)) != 0 {
		panic("unexpected non-empty carrier symbol")
	}
	l.outer[s] = c
	// relocsym's foldSubSymbolOffset requires that we only
	// have a single level of containment-- enforce here.
	if l.outer[c] != 0 {
		panic("invalid nested carrier sym")
	}
}

// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
	l.growAttrBitmaps(l.NSym() + 1)
}

type symWithVal struct {
	s Sym
	v int64
}
type bySymValue []symWithVal

func (s bySymValue) Len() int           { return len(s) }
func (s bySymValue) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }

// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {

	if s == 0 || l.sub[s] == 0 {
		return s
	}

	// Sort symbols using a slice first. Use a stable sort on the off
	// chance that there's more than once symbol with the same value,
	// so as to preserve reproducible builds.
	sl := []symWithVal{}
	for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
		sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
	}
	sort.Stable(bySymValue(sl))

	// Then apply any changes needed to the sub map.
	ns := Sym(0)
	for i := len(sl) - 1; i >= 0; i-- {
		s := sl[i].s
		l.sub[s] = ns
		ns = s
	}

	// Update sub for outer symbol, then return
	l.sub[s] = sl[0].s
	return sl[0].s
}

// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
	if reqLen > l.attrReachable.Len() {
		// These are indexed by global symbol
		l.attrReachable = growBitmap(reqLen, l.attrReachable)
		l.attrOnList = growBitmap(reqLen, l.attrOnList)
		l.attrLocal = growBitmap(reqLen, l.attrLocal)
		l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
		l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface)
	}
	l.growExtAttrBitmaps()
}

func (l *Loader) growExtAttrBitmaps() {
	// These are indexed by external symbol index (e.g. l.extIndex(i))
	extReqLen := len(l.payloads)
	if extReqLen > l.attrVisibilityHidden.Len() {
		l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
		l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
		l.attrShared = growBitmap(extReqLen, l.attrShared)
		l.attrExternal = growBitmap(extReqLen, l.attrExternal)
	}
}

func (relocs *Relocs) Count() int { return len(relocs.rs) }

// At2 returns the j-th reloc for a global symbol.
func (relocs *Relocs) At2(j int) Reloc2 {
	if relocs.l.isExtReader(relocs.r) {
		pp := relocs.l.payloads[relocs.li]
		return Reloc2{&relocs.rs[j], relocs.r, relocs.l, pp.reltypes[j]}
	}
	return Reloc2{&relocs.rs[j], relocs.r, relocs.l, 0}
}

// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
	r, li := l.toLocal(i)
	if r == nil {
		panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
	}
	return l.relocs(r, li)
}

// Relocs returns a Relocs object given a local sym index and reader.
func (l *Loader) relocs(r *oReader, li uint32) Relocs {
	var rs []goobj2.Reloc
	if l.isExtReader(r) {
		pp := l.payloads[li]
		rs = pp.relocs
	} else {
		rs = r.Relocs(li)
	}
	return Relocs{
		rs: rs,
		li: li,
		r:  r,
		l:  l,
	}
}

// ExtRelocs returns the external relocations of the i-th symbol.
func (l *Loader) ExtRelocs(i Sym) ExtRelocs {
	return ExtRelocs{l.Relocs(i), l.extRelocs[i]}
}

// ExtRelocs represents the set of external relocations of a symbol.
type ExtRelocs struct {
	rs Relocs
	es []ExtReloc
}

func (ers ExtRelocs) Count() int { return len(ers.es) }

func (ers ExtRelocs) At(j int) ExtRelocView {
	i := ers.es[j].Idx
	return ExtRelocView{ers.rs.At2(i), ers.es[j]}
}

// RelocByOff implements sort.Interface for sorting relocations by offset.

type RelocByOff []Reloc

func (x RelocByOff) Len() int           { return len(x) }
func (x RelocByOff) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }

// FuncInfo provides hooks to access goobj2.FuncInfo in the objects.
type FuncInfo struct {
	l       *Loader
	r       *oReader
	data    []byte
	auxs    []goobj2.Aux
	lengths goobj2.FuncInfoLengths
}

func (fi *FuncInfo) Valid() bool { return fi.r != nil }

func (fi *FuncInfo) Args() int {
	return int((*goobj2.FuncInfo)(nil).ReadArgs(fi.data))
}

func (fi *FuncInfo) Locals() int {
	return int((*goobj2.FuncInfo)(nil).ReadLocals(fi.data))
}

func (fi *FuncInfo) Pcsp() []byte {
	pcsp, end := (*goobj2.FuncInfo)(nil).ReadPcsp(fi.data)
	return fi.r.BytesAt(fi.r.PcdataBase()+pcsp, int(end-pcsp))
}

func (fi *FuncInfo) Pcfile() []byte {
	pcf, end := (*goobj2.FuncInfo)(nil).ReadPcfile(fi.data)
	return fi.r.BytesAt(fi.r.PcdataBase()+pcf, int(end-pcf))
}

func (fi *FuncInfo) Pcline() []byte {
	pcln, end := (*goobj2.FuncInfo)(nil).ReadPcline(fi.data)
	return fi.r.BytesAt(fi.r.PcdataBase()+pcln, int(end-pcln))
}

// Preload has to be called prior to invoking the various methods
// below related to pcdata, funcdataoff, files, and inltree nodes.
func (fi *FuncInfo) Preload() {
	fi.lengths = (*goobj2.FuncInfo)(nil).ReadFuncInfoLengths(fi.data)
}

func (fi *FuncInfo) Pcinline() []byte {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	pcinl, end := (*goobj2.FuncInfo)(nil).ReadPcinline(fi.data, fi.lengths.PcdataOff)
	return fi.r.BytesAt(fi.r.PcdataBase()+pcinl, int(end-pcinl))
}

func (fi *FuncInfo) NumPcdata() uint32 {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	return fi.lengths.NumPcdata
}

func (fi *FuncInfo) Pcdata(k int) []byte {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	pcdat, end := (*goobj2.FuncInfo)(nil).ReadPcdata(fi.data, fi.lengths.PcdataOff, uint32(k))
	return fi.r.BytesAt(fi.r.PcdataBase()+pcdat, int(end-pcdat))
}

func (fi *FuncInfo) NumFuncdataoff() uint32 {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	return fi.lengths.NumFuncdataoff
}

func (fi *FuncInfo) Funcdataoff(k int) int64 {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	return (*goobj2.FuncInfo)(nil).ReadFuncdataoff(fi.data, fi.lengths.FuncdataoffOff, uint32(k))
}

func (fi *FuncInfo) Funcdata(syms []Sym) []Sym {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	if int(fi.lengths.NumFuncdataoff) > cap(syms) {
		syms = make([]Sym, 0, fi.lengths.NumFuncdataoff)
	} else {
		syms = syms[:0]
	}
	for j := range fi.auxs {
		a := &fi.auxs[j]
		if a.Type() == goobj2.AuxFuncdata {
			syms = append(syms, fi.l.resolve(fi.r, a.Sym()))
		}
	}
	return syms
}

func (fi *FuncInfo) NumFile() uint32 {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	return fi.lengths.NumFile
}

func (fi *FuncInfo) File(k int) Sym {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	sr := (*goobj2.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k))
	return fi.l.resolve(fi.r, sr)
}

type InlTreeNode struct {
	Parent   int32
	File     Sym
	Line     int32
	Func     Sym
	ParentPC int32
}

func (fi *FuncInfo) NumInlTree() uint32 {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	return fi.lengths.NumInlTree
}

func (fi *FuncInfo) InlTree(k int) InlTreeNode {
	if !fi.lengths.Initialized {
		panic("need to call Preload first")
	}
	node := (*goobj2.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k))
	return InlTreeNode{
		Parent:   node.Parent,
		File:     fi.l.resolve(fi.r, node.File),
		Line:     node.Line,
		Func:     fi.l.resolve(fi.r, node.Func),
		ParentPC: node.ParentPC,
	}
}

func (l *Loader) FuncInfo(i Sym) FuncInfo {
	var r *oReader
	var auxs []goobj2.Aux
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		if pp.objidx == 0 {
			return FuncInfo{}
		}
		r = l.objs[pp.objidx].r
		auxs = pp.auxs
	} else {
		var li uint32
		r, li = l.toLocal(i)
		auxs = r.Auxs(li)
	}
	for j := range auxs {
		a := &auxs[j]
		if a.Type() == goobj2.AuxFuncInfo {
			b := r.Data(a.Sym().SymIdx)
			return FuncInfo{l, r, b, auxs, goobj2.FuncInfoLengths{}}
		}
	}
	return FuncInfo{}
}

// Preload a package: add autolibs, add defined package symbols to the symbol table.
// Does not add non-package symbols yet, which will be done in LoadNonpkgSyms.
// Does not read symbol data.
// Returns the fingerprint of the object.
func (l *Loader) Preload(localSymVersion int, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj2.FingerprintType {
	roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName)
	if err != nil {
		log.Fatal("cannot read object file:", err)
	}
	r := goobj2.NewReaderFromBytes(roObject, readonly)
	if r == nil {
		if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) {
			log.Fatalf("found object file %s in old format", f.File().Name())
		}
		panic("cannot read object file")
	}
	pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
	ndef := r.NSym()
	nhashed64def := r.NHashed64def()
	nhasheddef := r.NHasheddef()
	or := &oReader{
		Reader:       r,
		unit:         unit,
		version:      localSymVersion,
		flags:        r.Flags(),
		pkgprefix:    pkgprefix,
		syms:         make([]Sym, ndef+nhashed64def+nhasheddef+r.NNonpkgdef()+r.NNonpkgref()),
		ndef:         ndef,
		nhasheddef:   nhasheddef,
		nhashed64def: nhashed64def,
		objidx:       uint32(len(l.objs)),
	}

	// Autolib
	lib.Autolib = append(lib.Autolib, r.Autolib()...)

	// DWARF file table
	nfile := r.NDwarfFile()
	unit.DWARFFileTable = make([]string, nfile)
	for i := range unit.DWARFFileTable {
		unit.DWARFFileTable[i] = r.DwarfFile(i)
	}

	l.addObj(lib.Pkg, or)
	l.preloadSyms(or, pkgDef)

	// The caller expects us consuming all the data
	f.MustSeek(length, os.SEEK_CUR)

	return r.Fingerprint()
}

// Preload symbols of given kind from an object.
func (l *Loader) preloadSyms(r *oReader, kind int) {
	var start, end uint32
	switch kind {
	case pkgDef:
		start = 0
		end = uint32(r.ndef)
	case hashed64Def:
		start = uint32(r.ndef)
		end = uint32(r.ndef + r.nhashed64def)
	case hashedDef:
		start = uint32(r.ndef + r.nhashed64def)
		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
	case nonPkgDef:
		start = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef())
	default:
		panic("preloadSyms: bad kind")
	}
	l.growAttrBitmaps(len(l.objSyms) + int(end-start))
	needNameExpansion := r.NeedNameExpansion()
	loadingRuntimePkg := r.unit.Lib.Pkg == "runtime"
	for i := start; i < end; i++ {
		osym := r.Sym(i)
		var name string
		var v int
		if kind != hashed64Def && kind != hashedDef { // we don't need the name, etc. for hashed symbols
			name = osym.Name(r.Reader)
			if needNameExpansion {
				name = strings.Replace(name, "\"\".", r.pkgprefix, -1)
			}
			v = abiToVer(osym.ABI(), r.version)
		}
		gi, added := l.addSym(name, v, r, i, kind, osym)
		r.syms[i] = gi
		if !added {
			continue
		}
		if osym.TopFrame() {
			l.SetAttrTopFrame(gi, true)
		}
		if osym.Local() {
			l.SetAttrLocal(gi, true)
		}
		if osym.UsedInIface() {
			l.SetAttrUsedInIface(gi, true)
		}
		if strings.HasPrefix(name, "go.itablink.") {
			l.itablink[gi] = struct{}{}
		}
		if strings.HasPrefix(name, "runtime.") ||
			(loadingRuntimePkg && strings.HasPrefix(name, "type.")) {
			if bi := goobj2.BuiltinIdx(name, v); bi != -1 {
				// This is a definition of a builtin symbol. Record where it is.
				l.builtinSyms[bi] = gi
			}
		}
		if a := osym.Align(); a != 0 {
			l.SetSymAlign(gi, int32(a))
		}
	}
}

// Add hashed (content-addressable) symbols, non-package symbols, and
// references to external symbols (which are always named).
func (l *Loader) LoadNonpkgSyms(arch *sys.Arch) {
	l.npkgsyms = l.NSym()
	for _, o := range l.objs[goObjStart:] {
		l.preloadSyms(o.r, hashed64Def)
		l.preloadSyms(o.r, hashedDef)
		l.preloadSyms(o.r, nonPkgDef)
	}
	for _, o := range l.objs[goObjStart:] {
		loadObjRefs(l, o.r, arch)
	}
	l.values = make([]int64, l.NSym(), l.NSym()+1000) // +1000 make some room for external symbols
}

func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) {
	ndef := uint32(r.NAlldef())
	needNameExpansion := r.NeedNameExpansion()
	for i, n := uint32(0), uint32(r.NNonpkgref()); i < n; i++ {
		osym := r.Sym(ndef + i)
		name := osym.Name(r.Reader)
		if needNameExpansion {
			name = strings.Replace(name, "\"\".", r.pkgprefix, -1)
		}
		v := abiToVer(osym.ABI(), r.version)
		r.syms[ndef+i] = l.LookupOrCreateSym(name, v)
		gi := r.syms[ndef+i]
		if osym.Local() {
			l.SetAttrLocal(gi, true)
		}
		if osym.UsedInIface() {
			l.SetAttrUsedInIface(gi, true)
		}
	}
}

func abiToVer(abi uint16, localSymVersion int) int {
	var v int
	if abi == goobj2.SymABIstatic {
		// Static
		v = localSymVersion
	} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
		// Note that data symbols are "ABI0", which maps to version 0.
		v = abiver
	} else {
		log.Fatalf("invalid symbol ABI: %d", abi)
	}
	return v
}

// ResolveABIAlias given a symbol returns the ABI alias target of that
// symbol. If the sym in question is not an alias, the sym itself is
// returned.
func (l *Loader) ResolveABIAlias(s Sym) Sym {
	if s == 0 {
		return 0
	}
	if l.SymType(s) != sym.SABIALIAS {
		return s
	}
	relocs := l.Relocs(s)
	target := relocs.At2(0).Sym()
	if l.SymType(target) == sym.SABIALIAS {
		panic(fmt.Sprintf("ABI alias %s references another ABI alias %s", l.SymName(s), l.SymName(target)))
	}
	return target
}

// TopLevelSym tests a symbol (by name and kind) to determine whether
// the symbol first class sym (participating in the link) or is an
// anonymous aux or sub-symbol containing some sub-part or payload of
// another symbol.
func (l *Loader) TopLevelSym(s Sym) bool {
	return topLevelSym(l.RawSymName(s), l.SymType(s))
}

// topLevelSym tests a symbol name and kind to determine whether
// the symbol first class sym (participating in the link) or is an
// anonymous aux or sub-symbol containing some sub-part or payload of
// another symbol.
func topLevelSym(sname string, skind sym.SymKind) bool {
	if sname != "" {
		return true
	}
	switch skind {
	case sym.SDWARFFCN, sym.SDWARFABSFCN, sym.SDWARFTYPE, sym.SDWARFCONST, sym.SDWARFCUINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC:
		return true
	default:
		return false
	}
}

// cloneToExternal takes the existing object file symbol (symIdx)
// and creates a new external symbol payload that is a clone with
// respect to name, version, type, relocations, etc. The idea here
// is that if the linker decides it wants to update the contents of
// a symbol originally discovered as part of an object file, it's
// easier to do this if we make the updates to an external symbol
// payload.
func (l *Loader) cloneToExternal(symIdx Sym) {
	if l.IsExternal(symIdx) {
		panic("sym is already external, no need for clone")
	}

	// Read the particulars from object.
	r, li := l.toLocal(symIdx)
	osym := r.Sym(li)
	sname := osym.Name(r.Reader)
	if r.NeedNameExpansion() {
		sname = strings.Replace(sname, "\"\".", r.pkgprefix, -1)
	}
	sver := abiToVer(osym.ABI(), r.version)
	skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]

	// Create new symbol, update version and kind.
	pi := l.newPayload(sname, sver)
	pp := l.payloads[pi]
	pp.kind = skind
	pp.ver = sver
	pp.size = int64(osym.Siz())
	pp.objidx = r.objidx

	// If this is a def, then copy the guts. We expect this case
	// to be very rare (one case it may come up is with -X).
	if li < uint32(r.NAlldef()) {

		// Copy relocations
		relocs := l.Relocs(symIdx)
		pp.relocs = make([]goobj2.Reloc, relocs.Count())
		pp.reltypes = make([]objabi.RelocType, relocs.Count())
		for i := range pp.relocs {
			// Copy the relocs slice.
			// Convert local reference to global reference.
			rel := relocs.At2(i)
			pp.relocs[i].Set(rel.Off(), rel.Siz(), 0, rel.Add(), goobj2.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())})
			pp.reltypes[i] = rel.Type()
		}

		// Copy data
		pp.data = r.Data(li)
	}

	// If we're overriding a data symbol, collect the associated
	// Gotype, so as to propagate it to the new symbol.
	auxs := r.Auxs(li)
	pp.auxs = auxs

	// Install new payload to global index space.
	// (This needs to happen at the end, as the accessors above
	// need to access the old symbol content.)
	l.objSyms[symIdx] = objSym{l.extReader.objidx, uint32(pi)}
	l.extReader.syms = append(l.extReader.syms, symIdx)
}

// Copy the payload of symbol src to dst. Both src and dst must be external
// symbols.
// The intended use case is that when building/linking against a shared library,
// where we do symbol name mangling, the Go object file may have reference to
// the original symbol name whereas the shared library provides a symbol with
// the mangled name. When we do mangling, we copy payload of mangled to original.
func (l *Loader) CopySym(src, dst Sym) {
	if !l.IsExternal(dst) {
		panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst))
	}
	if !l.IsExternal(src) {
		panic("src is not external") //l.cloneToExternal(src)
	}
	l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)]
	l.SetSymPkg(dst, l.SymPkg(src))
	// TODO: other attributes?
}

// CopyAttributes copies over all of the attributes of symbol 'src' to
// symbol 'dst'.
func (l *Loader) CopyAttributes(src Sym, dst Sym) {
	l.SetAttrReachable(dst, l.AttrReachable(src))
	l.SetAttrOnList(dst, l.AttrOnList(src))
	l.SetAttrLocal(dst, l.AttrLocal(src))
	l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src))
	if l.IsExternal(dst) {
		l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src))
		l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src))
		l.SetAttrShared(dst, l.AttrShared(src))
		l.SetAttrExternal(dst, l.AttrExternal(src))
	} else {
		// Some attributes are modifiable only for external symbols.
		// In such cases, don't try to transfer over the attribute
		// from the source even if there is a clash. This comes up
		// when copying attributes from a dupOK ABI wrapper symbol to
		// the real target symbol (which may not be marked dupOK).
	}
	l.SetAttrTopFrame(dst, l.AttrTopFrame(src))
	l.SetAttrSpecial(dst, l.AttrSpecial(src))
	l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src))
	l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src))
	l.SetAttrReadOnly(dst, l.AttrReadOnly(src))
}

// CreateExtSym creates a new external symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateExtSym(name string, ver int) Sym {
	return l.newExtSym(name, ver)
}

// CreateStaticSym creates a new static symbol with the specified name
// without adding it to any lookup tables, returning a Sym index for it.
func (l *Loader) CreateStaticSym(name string) Sym {
	// Assign a new unique negative version -- this is to mark the
	// symbol so that it is not included in the name lookup table.
	l.anonVersion--
	return l.newExtSym(name, l.anonVersion)
}

func (l *Loader) FreeSym(i Sym) {
	if l.IsExternal(i) {
		pp := l.getPayload(i)
		*pp = extSymPayload{}
	}
}

// relocId is essentially a <S,R> tuple identifying the Rth
// relocation of symbol S.
type relocId struct {
	sym  Sym
	ridx int
}

// SetRelocVariant sets the 'variant' property of a relocation on
// some specific symbol.
func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) {
	// sanity check
	if relocs := l.Relocs(s); ri >= relocs.Count() {
		panic("invalid relocation ID")
	}
	if l.relocVariant == nil {
		l.relocVariant = make(map[relocId]sym.RelocVariant)
	}
	if v != 0 {
		l.relocVariant[relocId{s, ri}] = v
	} else {
		delete(l.relocVariant, relocId{s, ri})
	}
}

// RelocVariant returns the 'variant' property of a relocation on
// some specific symbol.
func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant {
	return l.relocVariant[relocId{s, ri}]
}

// UndefinedRelocTargets iterates through the global symbol index
// space, looking for symbols with relocations targeting undefined
// references. The linker's loadlib method uses this to determine if
// there are unresolved references to functions in system libraries
// (for example, libgcc.a), presumably due to CGO code. Return
// value is a list of loader.Sym's corresponding to the undefined
// cross-refs. The "limit" param controls the maximum number of
// results returned; if "limit" is -1, then all undefs are returned.
func (l *Loader) UndefinedRelocTargets(limit int) []Sym {
	result := []Sym{}
	for si := Sym(1); si < Sym(len(l.objSyms)); si++ {
		relocs := l.Relocs(si)
		for ri := 0; ri < relocs.Count(); ri++ {
			r := relocs.At2(ri)
			rs := r.Sym()
			if rs != 0 && l.SymType(rs) == sym.SXREF && l.RawSymName(rs) != ".got" {
				result = append(result, rs)
				if limit != -1 && len(result) >= limit {
					break
				}
			}
		}
	}
	return result
}

// AssignTextSymbolOrder populates the Textp slices within each
// library and compilation unit, insuring that packages are laid down
// in dependency order (internal first, then everything else). Return value
// is a slice of all text syms.
func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym {

	// Library Textp lists should be empty at this point.
	for _, lib := range libs {
		if len(lib.Textp) != 0 {
			panic("expected empty Textp slice for library")
		}
		if len(lib.DupTextSyms) != 0 {
			panic("expected empty DupTextSyms slice for library")
		}
	}

	// Used to record which dupok symbol we've assigned to a unit.
	// Can't use the onlist attribute here because it will need to
	// clear for the later assignment of the sym.Symbol to a unit.
	// NB: we can convert to using onList once we no longer have to
	// call the regular addToTextp.
	assignedToUnit := MakeBitmap(l.NSym() + 1)

	// Start off textp with reachable external syms.
	textp := []Sym{}
	for _, sym := range extsyms {
		if !l.attrReachable.Has(sym) {
			continue
		}
		textp = append(textp, sym)
	}

	// Walk through all text symbols from Go object files and append
	// them to their corresponding library's textp list.
	for _, o := range l.objs[goObjStart:] {
		r := o.r
		lib := r.unit.Lib
		for i, n := uint32(0), uint32(r.NAlldef()); i < n; i++ {
			gi := l.toGlobal(r, i)
			if !l.attrReachable.Has(gi) {
				continue
			}
			osym := r.Sym(i)
			st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
			if st != sym.STEXT {
				continue
			}
			dupok := osym.Dupok()
			if r2, i2 := l.toLocal(gi); r2 != r || i2 != i {
				// A dupok text symbol is resolved to another package.
				// We still need to record its presence in the current
				// package, as the trampoline pass expects packages
				// are laid out in dependency order.
				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
				continue // symbol in different object
			}
			if dupok {
				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
				continue
			}

			lib.Textp = append(lib.Textp, sym.LoaderSym(gi))
		}
	}

	// Now assemble global textp, and assign text symbols to units.
	for _, doInternal := range [2]bool{true, false} {
		for idx, lib := range libs {
			if intlibs[idx] != doInternal {
				continue
			}
			lists := [2][]sym.LoaderSym{lib.Textp, lib.DupTextSyms}
			for i, list := range lists {
				for _, s := range list {
					sym := Sym(s)
					if l.attrReachable.Has(sym) && !assignedToUnit.Has(sym) {
						textp = append(textp, sym)
						unit := l.SymUnit(sym)
						if unit != nil {
							unit.Textp = append(unit.Textp, s)
							assignedToUnit.Set(sym)
						}
						// Dupok symbols may be defined in multiple packages; the
						// associated package for a dupok sym is chosen sort of
						// arbitrarily (the first containing package that the linker
						// loads). Canonicalizes its Pkg to the package with which
						// it will be laid down in text.
						if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg {
							l.SetSymPkg(sym, lib.Pkg)
						}
					}
				}
			}
			lib.Textp = nil
			lib.DupTextSyms = nil
		}
	}

	return textp
}

// ErrorReporter is a helper class for reporting errors.
type ErrorReporter struct {
	ldr              *Loader
	AfterErrorAction func()
}

// Errorf method logs an error message.
//
// After each error, the error actions function will be invoked; this
// will either terminate the link immediately (if -h option given)
// or it will keep a count and exit if more than 20 errors have been printed.
//
// Logging an error means that on exit cmd/link will delete any
// output file and return a non-zero error code.
//
func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) {
	if s != 0 && reporter.ldr.SymName(s) != "" {
		format = reporter.ldr.SymName(s) + ": " + format
	} else {
		format = fmt.Sprintf("sym %d: %s", s, format)
	}
	format += "\n"
	fmt.Fprintf(os.Stderr, format, args...)
	reporter.AfterErrorAction()
}

// GetErrorReporter returns the loader's associated error reporter.
func (l *Loader) GetErrorReporter() *ErrorReporter {
	return l.errorReporter
}

// Errorf method logs an error message. See ErrorReporter.Errorf for details.
func (l *Loader) Errorf(s Sym, format string, args ...interface{}) {
	l.errorReporter.Errorf(s, format, args...)
}

// Symbol statistics.
func (l *Loader) Stat() string {
	s := fmt.Sprintf("%d symbols, %d reachable\n", l.NSym(), l.NReachableSym())
	s += fmt.Sprintf("\t%d package symbols, %d hashed symbols, %d non-package symbols, %d external symbols\n",
		l.npkgsyms, len(l.hashed64Syms)+len(l.hashedSyms), int(l.extStart)-l.npkgsyms-len(l.hashed64Syms)-len(l.hashedSyms), l.NSym()-int(l.extStart))
	return s
}

// For debugging.
func (l *Loader) Dump() {
	fmt.Println("objs")
	for _, obj := range l.objs[goObjStart:] {
		if obj.r != nil {
			fmt.Println(obj.i, obj.r.unit.Lib)
		}
	}
	fmt.Println("extStart:", l.extStart)
	fmt.Println("Nsyms:", len(l.objSyms))
	fmt.Println("syms")
	for i := Sym(1); i < Sym(len(l.objSyms)); i++ {
		pi := interface{}("")
		if l.IsExternal(i) {
			pi = fmt.Sprintf("<ext %d>", l.extIndex(i))
		}
		fmt.Println(i, l.SymName(i), l.SymType(i), pi)
	}
	fmt.Println("symsByName")
	for name, i := range l.symsByName[0] {
		fmt.Println(i, name, 0)
	}
	for name, i := range l.symsByName[1] {
		fmt.Println(i, name, 1)
	}
	fmt.Println("payloads:")
	for i := range l.payloads {
		pp := l.payloads[i]
		fmt.Println(i, pp.name, pp.ver, pp.kind)
	}
}