Newer
Older
// marker so the reader knows to synthesize a fake declaration to
// prevent inlining.
if quirksMode() {
w.code(stmtTypeDeclHack)
}
case *syntax.VarDecl:
values := unpackListExpr(decl.Values)
// Quirk: When N variables are declared with N initialization
// values, we need to decompose that into N interleaved
// declarations+initializations, because it leads to different
// (albeit semantically equivalent) code generation.
if quirksMode() && len(decl.NameList) == len(values) {
for i, name := range decl.NameList {
w.code(stmtAssign)
w.pos(decl)
w.exprList(values[i])
w.assignList(name)
}
break
}
w.code(stmtAssign)
w.pos(decl)
w.exprList(decl.Values)
w.assignList(namesAsExpr(decl.NameList))
}
}
func (w *writer) blockStmt(stmt *syntax.BlockStmt) {
w.sync(syncBlockStmt)
w.openScope(stmt.Pos())
w.stmts(stmt.List)
w.closeScope(stmt.Rbrace)
}
func (w *writer) forStmt(stmt *syntax.ForStmt) {
w.sync(syncForStmt)
w.openScope(stmt.Pos())
if rang, ok := stmt.Init.(*syntax.RangeClause); w.bool(ok) {
w.pos(rang)
w.expr(rang.X)
w.assignList(rang.Lhs)
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
} else {
w.pos(stmt)
w.stmt(stmt.Init)
w.expr(stmt.Cond)
w.stmt(stmt.Post)
}
w.blockStmt(stmt.Body)
w.closeAnotherScope()
}
func (w *writer) ifStmt(stmt *syntax.IfStmt) {
w.sync(syncIfStmt)
w.openScope(stmt.Pos())
w.pos(stmt)
w.stmt(stmt.Init)
w.expr(stmt.Cond)
w.blockStmt(stmt.Then)
w.stmt(stmt.Else)
w.closeAnotherScope()
}
func (w *writer) selectStmt(stmt *syntax.SelectStmt) {
w.sync(syncSelectStmt)
w.pos(stmt)
w.len(len(stmt.Body))
for i, clause := range stmt.Body {
if i > 0 {
w.closeScope(clause.Pos())
}
w.openScope(clause.Pos())
w.pos(clause)
w.stmt(clause.Comm)
w.stmts(clause.Body)
}
if len(stmt.Body) > 0 {
w.closeScope(stmt.Rbrace)
}
}
func (w *writer) switchStmt(stmt *syntax.SwitchStmt) {
w.sync(syncSwitchStmt)
w.openScope(stmt.Pos())
w.pos(stmt)
w.stmt(stmt.Init)
if guard, ok := stmt.Tag.(*syntax.TypeSwitchGuard); w.bool(ok) {
w.pos(guard)
if tag := guard.Lhs; w.bool(tag != nil) {
w.pos(tag)
w.string(tag.Value)
}
w.expr(guard.X)
} else {
w.expr(stmt.Tag)
}
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
w.len(len(stmt.Body))
for i, clause := range stmt.Body {
if i > 0 {
w.closeScope(clause.Pos())
}
w.openScope(clause.Pos())
w.pos(clause)
w.exprList(clause.Cases)
if obj, ok := w.p.info.Implicits[clause]; ok {
// TODO(mdempsky): These pos details are quirkish, but also
// necessary so the variable's position is correct for DWARF
// scope assignment later. It would probably be better for us to
// instead just set the variable's DWARF scoping info earlier so
// we can give it the correct position information.
pos := clause.Pos()
if typs := unpackListExpr(clause.Cases); len(typs) != 0 {
pos = typeExprEndPos(typs[len(typs)-1])
}
w.pos(pos)
obj := obj.(*types2.Var)
w.typ(obj.Type())
w.addLocal(obj)
}
w.stmts(clause.Body)
}
if len(stmt.Body) > 0 {
w.closeScope(stmt.Rbrace)
}
w.closeScope(stmt.Rbrace)
}
func (w *writer) label(label *syntax.Name) {
w.sync(syncLabel)
// TODO(mdempsky): Replace label strings with dense indices.
w.string(label.Value)
}
func (w *writer) optLabel(label *syntax.Name) {
w.sync(syncOptLabel)
if w.bool(label != nil) {
w.label(label)
}
}
// @@@ Expressions
func (w *writer) expr(expr syntax.Expr) {
expr = unparen(expr) // skip parens; unneeded after typecheck
Robert Griesemer
committed
obj, inst := lookupObj(w.p.info, expr)
targs := inst.TypeArgs
if tv, ok := w.p.info.Types[expr]; ok {
Matthew Dempsky
committed
// TODO(mdempsky): Be more judicious about which types are marked as "needed".
Robert Griesemer
committed
if inst.Type != nil {
w.needType(inst.Type)
} else {
w.needType(tv.Type)
}
Matthew Dempsky
committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
if tv.IsType() {
w.code(exprType)
w.typ(tv.Type)
return
}
if tv.Value != nil {
pos := expr.Pos()
if quirksMode() {
if obj != nil {
// Quirk: IR (and thus iexport) doesn't track position
// information for uses of declared objects.
pos = syntax.Pos{}
} else if tv.Value.Kind() == constant.String {
// Quirk: noder.sum picks a particular position for certain
// string concatenations.
pos = sumPos(expr)
}
}
w.code(exprConst)
w.pos(pos)
w.typ(tv.Type)
w.value(tv.Value)
// TODO(mdempsky): These details are only important for backend
// diagnostics. Explore writing them out separately.
w.op(constExprOp(expr))
w.string(syntax.String(expr))
return
}
}
if obj != nil {
if isGlobal(obj) {
w.code(exprName)
w.obj(obj, targs)
return
}
obj := obj.(*types2.Var)
assert(targs.Len() == 0)
w.code(exprLocal)
w.useLocal(expr.Pos(), obj)
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
return
}
switch expr := expr.(type) {
default:
w.p.unexpected("expression", expr)
case nil: // absent slice index, for condition, or switch tag
w.code(exprNone)
case *syntax.Name:
assert(expr.Value == "_")
w.code(exprBlank)
case *syntax.CompositeLit:
w.code(exprCompLit)
w.compLit(expr)
case *syntax.FuncLit:
w.code(exprFuncLit)
w.funcLit(expr)
case *syntax.SelectorExpr:
sel, ok := w.p.info.Selections[expr]
assert(ok)
w.code(exprSelector)
w.expr(expr.X)
w.pos(expr)
w.selector(sel.Obj())
case *syntax.IndexExpr:
tv, ok := w.p.info.Types[expr.Index]
assert(ok && tv.IsValue())
w.code(exprIndex)
w.expr(expr.X)
w.pos(expr)
w.expr(expr.Index)
case *syntax.SliceExpr:
w.code(exprSlice)
w.expr(expr.X)
w.pos(expr)
for _, n := range &expr.Index {
w.expr(n)
}
case *syntax.AssertExpr:
w.code(exprAssert)
w.expr(expr.X)
w.pos(expr)
w.expr(expr.Type)
case *syntax.Operation:
if expr.Y == nil {
w.code(exprUnaryOp)
w.op(unOps[expr.Op])
w.pos(expr)
w.expr(expr.X)
break
}
w.code(exprBinaryOp)
w.op(binOps[expr.Op])
w.expr(expr.X)
w.pos(expr)
w.expr(expr.Y)
case *syntax.CallExpr:
tv, ok := w.p.info.Types[expr.Fun]
assert(ok)
if tv.IsType() {
assert(len(expr.ArgList) == 1)
assert(!expr.HasDots)
w.code(exprConvert)
w.typ(tv.Type)
w.pos(expr)
w.expr(expr.ArgList[0])
break
}
writeFunExpr := func() {
if selector, ok := unparen(expr.Fun).(*syntax.SelectorExpr); ok {
if sel, ok := w.p.info.Selections[selector]; ok && sel.Kind() == types2.MethodVal {
w.expr(selector.X)
w.bool(true) // method call
w.pos(selector)
w.selector(sel.Obj())
return
}
}
Robert Griesemer
committed
w.expr(expr.Fun)
w.bool(false) // not a method call (i.e., normal function call)
w.code(exprCall)
writeFunExpr()
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
w.pos(expr)
w.exprs(expr.ArgList)
w.bool(expr.HasDots)
}
}
func (w *writer) compLit(lit *syntax.CompositeLit) {
tv, ok := w.p.info.Types[lit]
assert(ok)
w.sync(syncCompLit)
w.pos(lit)
w.typ(tv.Type)
typ := tv.Type
if ptr, ok := typ.Underlying().(*types2.Pointer); ok {
typ = ptr.Elem()
}
str, isStruct := typ.Underlying().(*types2.Struct)
w.len(len(lit.ElemList))
for i, elem := range lit.ElemList {
if isStruct {
if kv, ok := elem.(*syntax.KeyValueExpr); ok {
// use position of expr.Key rather than of elem (which has position of ':')
w.pos(kv.Key)
w.len(fieldIndex(w.p.info, str, kv.Key.(*syntax.Name)))
elem = kv.Value
} else {
w.pos(elem)
w.len(i)
}
} else {
if kv, ok := elem.(*syntax.KeyValueExpr); w.bool(ok) {
// use position of expr.Key rather than of elem (which has position of ':')
w.pos(kv.Key)
w.expr(kv.Key)
elem = kv.Value
}
}
w.pos(elem)
w.expr(elem)
}
}
func (w *writer) funcLit(expr *syntax.FuncLit) {
tv, ok := w.p.info.Types[expr]
assert(ok)
sig := tv.Type.(*types2.Signature)
body, closureVars := w.p.bodyIdx(w.p.curpkg, sig, expr.Body, w.dict)
w.sync(syncFuncLit)
w.pos(expr)
w.pos(expr.Type) // for QuirksMode
w.signature(sig)
w.len(len(closureVars))
for _, cv := range closureVars {
w.pos(cv.pos)
if quirksMode() {
cv.pos = expr.Body.Rbrace
}
w.useLocal(cv.pos, cv.obj)
w.reloc(relocBody, body)
}
type posObj struct {
pos syntax.Pos
obj *types2.Var
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
}
func (w *writer) exprList(expr syntax.Expr) {
w.sync(syncExprList)
w.exprs(unpackListExpr(expr))
}
func (w *writer) exprs(exprs []syntax.Expr) {
if len(exprs) == 0 {
assert(exprs == nil)
}
w.sync(syncExprs)
w.len(len(exprs))
for _, expr := range exprs {
w.expr(expr)
}
}
func (w *writer) op(op ir.Op) {
// TODO(mdempsky): Remove in favor of explicit codes? Would make
// export data more stable against internal refactorings, but low
// priority at the moment.
assert(op != 0)
w.sync(syncOp)
w.len(int(op))
}
Matthew Dempsky
committed
func (w *writer) needType(typ types2.Type) {
// Decompose tuple into component element types.
if typ, ok := typ.(*types2.Tuple); ok {
for i := 0; i < typ.Len(); i++ {
w.needType(typ.At(i).Type())
}
return
}
if info := w.p.typIdx(typ, w.dict); info.derived {
w.dict.derived[info.idx].needed = true
}
}
// @@@ Package initialization
// Caution: This code is still clumsy, because toolstash -cmp is
// particularly sensitive to it.
type typeDeclGen struct {
*syntax.TypeDecl
gen int
// Implicit type parameters in scope at this type declaration.
implicits []*types2.TypeName
type fileImports struct {
importedEmbed, importedUnsafe bool
}
type declCollector struct {
pw *pkgWriter
typegen *int
file *fileImports
withinFunc bool
implicits []*types2.TypeName
}
func (c *declCollector) withTParams(obj types2.Object) *declCollector {
tparams := objTypeParams(obj)
Robert Griesemer
committed
n := tparams.Len()
if n == 0 {
return c
}
copy := *c
copy.implicits = copy.implicits[:len(copy.implicits):len(copy.implicits)]
Robert Griesemer
committed
for i := 0; i < n; i++ {
Robert Griesemer
committed
copy.implicits = append(copy.implicits, tparams.At(i).Obj())
Robert Griesemer
committed
}
return ©
func (c *declCollector) Visit(n syntax.Node) syntax.Visitor {
pw := c.pw
switch n := n.(type) {
case *syntax.File:
pw.checkPragmas(n.Pragma, ir.GoBuildPragma, false)
case *syntax.ImportDecl:
pw.checkPragmas(n.Pragma, 0, false)
switch pkgNameOf(pw.info, n).Imported().Path() {
case "embed":
c.file.importedEmbed = true
case "unsafe":
c.file.importedUnsafe = true
}
case *syntax.ConstDecl:
pw.checkPragmas(n.Pragma, 0, false)
case *syntax.FuncDecl:
pw.checkPragmas(n.Pragma, funcPragmas, false)
obj := pw.info.Defs[n.Name].(*types2.Func)
pw.funDecls[obj] = n
return c.withTParams(obj)
case *syntax.TypeDecl:
obj := pw.info.Defs[n.Name].(*types2.TypeName)
d := typeDeclGen{TypeDecl: n, implicits: c.implicits}
if n.Alias {
pw.checkPragmas(n.Pragma, 0, false)
} else {
pw.checkPragmas(n.Pragma, typePragmas, false)
// Assign a unique ID to function-scoped defined types.
if c.withinFunc {
*c.typegen++
d.gen = *c.typegen
}
}
pw.typDecls[obj] = d
// TODO(mdempsky): Omit? Not strictly necessary; only matters for
// type declarations within function literals within parameterized
// type declarations, but types2 the function literals will be
// constant folded away.
return c.withTParams(obj)
case *syntax.VarDecl:
pw.checkPragmas(n.Pragma, 0, true)
if p, ok := n.Pragma.(*pragmas); ok && len(p.Embeds) > 0 {
if err := checkEmbed(n, c.file.importedEmbed, c.withinFunc); err != nil {
pw.errorf(p.Embeds[0].Pos, "%s", err)
}
}
// Workaround for #46208. For variable declarations that
// declare multiple variables and have an explicit type
// expression, the type expression is evaluated multiple
// times. This affects toolstash -cmp, because iexport is
// sensitive to *types.Type pointer identity.
if quirksMode() && n.Type != nil {
tv, ok := pw.info.Types[n.Type]
assert(ok)
assert(tv.IsType())
for _, name := range n.NameList {
obj := pw.info.Defs[name].(*types2.Var)
pw.dups.add(obj.Type(), tv.Type)
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
}
case *syntax.BlockStmt:
if !c.withinFunc {
copy := *c
copy.withinFunc = true
return ©
}
}
return c
}
func (pw *pkgWriter) collectDecls(noders []*noder) {
var typegen int
for _, p := range noders {
var file fileImports
syntax.Walk(p.file, &declCollector{
pw: pw,
typegen: &typegen,
file: &file,
})
pw.cgoPragmas = append(pw.cgoPragmas, p.pragcgobuf...)
for _, l := range p.linknames {
if !file.importedUnsafe {
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
pw.errorf(l.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
continue
}
switch obj := pw.curpkg.Scope().Lookup(l.local).(type) {
case *types2.Func, *types2.Var:
if _, ok := pw.linknames[obj]; !ok {
pw.linknames[obj] = l.remote
} else {
pw.errorf(l.pos, "duplicate //go:linkname for %s", l.local)
}
default:
// TODO(mdempsky): Enable after #42938 is fixed.
if false {
pw.errorf(l.pos, "//go:linkname must refer to declared function or variable")
}
}
}
}
}
func (pw *pkgWriter) checkPragmas(p syntax.Pragma, allowed ir.PragmaFlag, embedOK bool) {
if p == nil {
return
}
pragma := p.(*pragmas)
for _, pos := range pragma.Pos {
if pos.Flag&^allowed != 0 {
pw.errorf(pos.Pos, "misplaced compiler directive")
}
}
if !embedOK {
for _, e := range pragma.Embeds {
pw.errorf(e.Pos, "misplaced go:embed directive")
}
}
}
func (w *writer) pkgInit(noders []*noder) {
if quirksMode() {
posBases := posBasesOf(noders)
w.len(len(posBases))
for _, posBase := range posBases {
w.posBase(posBase)
}
objs := importedObjsOf(w.p.curpkg, w.p.info, noders)
w.len(len(objs))
for _, obj := range objs {
w.qualifiedIdent(obj)
}
}
w.len(len(w.p.cgoPragmas))
for _, cgoPragma := range w.p.cgoPragmas {
w.strings(cgoPragma)
}
w.sync(syncDecls)
for _, p := range noders {
for _, decl := range p.file.DeclList {
w.pkgDecl(decl)
}
}
w.code(declEnd)
w.sync(syncEOF)
}
func (w *writer) pkgDecl(decl syntax.Decl) {
switch decl := decl.(type) {
default:
w.p.unexpected("declaration", decl)
case *syntax.ImportDecl:
case *syntax.ConstDecl:
w.code(declOther)
w.pkgObjs(decl.NameList...)
case *syntax.FuncDecl:
if decl.Name.Value == "_" {
break // skip blank functions
}
obj := w.p.info.Defs[decl.Name].(*types2.Func)
sig := obj.Type().(*types2.Signature)
if sig.RecvTypeParams() != nil || sig.TypeParams() != nil {
break // skip generic functions
}
if recv := sig.Recv(); recv != nil {
w.code(declMethod)
w.typ(recvBase(recv))
w.selector(obj)
break
}
w.code(declFunc)
w.pkgObjs(decl.Name)
case *syntax.TypeDecl:
if len(decl.TParamList) != 0 {
break // skip generic type decls
}
if decl.Name.Value == "_" {
break // skip blank type decls
}
name := w.p.info.Defs[decl.Name].(*types2.TypeName)
// Skip type declarations for interfaces that are only usable as
// type parameter bounds.
Robert Griesemer
committed
if iface, ok := name.Type().Underlying().(*types2.Interface); ok && !iface.IsMethodSet() {
break
}
// Skip aliases to uninstantiated generic types.
// TODO(mdempsky): Revisit after #46477 is resolved.
if name.IsAlias() {
named, ok := name.Type().(*types2.Named)
if ok && named.TypeParams().Len() != 0 && named.TypeArgs().Len() == 0 {
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
break
}
}
w.code(declOther)
w.pkgObjs(decl.Name)
case *syntax.VarDecl:
w.code(declVar)
w.pos(decl)
w.pkgObjs(decl.NameList...)
w.exprList(decl.Values)
var embeds []pragmaEmbed
if p, ok := decl.Pragma.(*pragmas); ok {
embeds = p.Embeds
}
w.len(len(embeds))
for _, embed := range embeds {
w.pos(embed.Pos)
w.strings(embed.Patterns)
}
}
}
func (w *writer) pkgObjs(names ...*syntax.Name) {
w.sync(syncDeclNames)
w.len(len(names))
for _, name := range names {
obj, ok := w.p.info.Defs[name]
assert(ok)
w.sync(syncDeclName)
w.obj(obj, nil)
}
}
// @@@ Helpers
// isDefinedType reports whether obj is a defined type.
func isDefinedType(obj types2.Object) bool {
if obj, ok := obj.(*types2.TypeName); ok {
return !obj.IsAlias()
}
return false
}
// isGlobal reports whether obj was declared at package scope.
//
// Caveat: blank objects are not declared.
func isGlobal(obj types2.Object) bool {
return obj.Parent() == obj.Pkg().Scope()
}
// lookupObj returns the object that expr refers to, if any. If expr
Robert Griesemer
committed
// is an explicit instantiation of a generic object, then the instance
// object is returned as well.
func lookupObj(info *types2.Info, expr syntax.Expr) (obj types2.Object, inst types2.Instance) {
if index, ok := expr.(*syntax.IndexExpr); ok {
Robert Griesemer
committed
args := unpackListExpr(index.Index)
if len(args) == 1 {
tv, ok := info.Types[args[0]]
assert(ok)
if tv.IsValue() {
return // normal index expression
}
}
expr = index.X
}
// Strip package qualifier, if present.
if sel, ok := expr.(*syntax.SelectorExpr); ok {
if !isPkgQual(info, sel) {
return // normal selector expression
}
expr = sel.Sel
}
if name, ok := expr.(*syntax.Name); ok {
Robert Griesemer
committed
obj = info.Uses[name]
inst = info.Instances[name]
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
}
return
}
// isPkgQual reports whether the given selector expression is a
// package-qualified identifier.
func isPkgQual(info *types2.Info, sel *syntax.SelectorExpr) bool {
if name, ok := sel.X.(*syntax.Name); ok {
_, isPkgName := info.Uses[name].(*types2.PkgName)
return isPkgName
}
return false
}
// recvBase returns the base type for the given receiver parameter.
func recvBase(recv *types2.Var) *types2.Named {
typ := recv.Type()
if ptr, ok := typ.(*types2.Pointer); ok {
typ = ptr.Elem()
}
return typ.(*types2.Named)
}
// namesAsExpr returns a list of names as a syntax.Expr.
func namesAsExpr(names []*syntax.Name) syntax.Expr {
if len(names) == 1 {
return names[0]
}
exprs := make([]syntax.Expr, len(names))
for i, name := range names {
exprs[i] = name
}
return &syntax.ListExpr{ElemList: exprs}
}
// fieldIndex returns the index of the struct field named by key.
func fieldIndex(info *types2.Info, str *types2.Struct, key *syntax.Name) int {
field := info.Uses[key].(*types2.Var)
for i := 0; i < str.NumFields(); i++ {
if str.Field(i) == field {
return i
}
}
panic(fmt.Sprintf("%s: %v is not a field of %v", key.Pos(), field, str))
}
// objTypeParams returns the type parameters on the given object.
func objTypeParams(obj types2.Object) *types2.TypeParamList {
switch obj := obj.(type) {
case *types2.Func:
sig := obj.Type().(*types2.Signature)
if sig.Recv() != nil {
return sig.RecvTypeParams()
}
return sig.TypeParams()
case *types2.TypeName:
if !obj.IsAlias() {
return obj.Type().(*types2.Named).TypeParams()