Newer
Older
// Returns whether this symbol should be included in typelink.
func (l *Loader) IsTypelink(i Sym) bool {
return l.SymAttr(i)&goobj2.SymFlagTypelink != 0
}
// Returns whether this is a "go.itablink.*" symbol.
func (l *Loader) IsItabLink(i Sym) bool {
if _, ok := l.itablink[i]; ok {
return true
}
return false
}
// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
curLen := len(l.values)
if reqLen > curLen {
l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
}
}
// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
return l.values[i]
}
// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
l.values[i] = val
}
// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
if l.IsExternal(i) {
Than McIntosh
committed
pp := l.getPayload(i)
if pp != nil {
return pp.data
}
return nil
}
r, li := l.toLocal(i)
return r.Data(li)
}
// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
// If an alignment has been recorded, return that.
if align, ok := l.align[i]; ok {
return align
}
// TODO: would it make sense to return an arch-specific
// alignment depending on section type? E.g. STEXT => 32,
// SDATA => 1, etc?
return 0
}
// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
// reject bad synbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymAlign")
}
// Reject nonsense alignments.
// TODO: do we need this?
if align < 0 {
panic("bad alignment value")
}
if align == 0 {
delete(l.align, i)
} else {
// Alignment should be a power of 2.
if bits.OnesCount32(uint32(align)) != 1 {
panic("bad alignment value")
}
l.align[i] = align
}
}
// SymValue returns the section of the i-th symbol. i is global index.
func (l *Loader) SymSect(i Sym) *sym.Section {
if int(i) >= len(l.symSects) {
// symSects is extended lazily -- it the sym in question is
// outside the range of the existing slice, then we assume its
// section has not yet been set.
return nil
}
Cherry Zhang
committed
return l.sects[l.symSects[i]]
}
// SetSymValue sets the section of the i-th symbol. i is global index.
func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
Cherry Zhang
committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
if int(i) >= len(l.symSects) {
l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
}
l.symSects[i] = sect.Index
}
// growSects grows the slice used to store symbol sections.
func (l *Loader) growSects(reqLen int) {
curLen := len(l.symSects)
if reqLen > curLen {
l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...)
}
}
// NewSection creates a new (output) section.
func (l *Loader) NewSection() *sym.Section {
sect := new(sym.Section)
idx := len(l.sects)
if idx != int(uint16(idx)) {
panic("too many sections created")
}
sect.Index = uint16(idx)
l.sects = append(l.sects, sect)
return sect
}
// SymDynImplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
return l.dynimplib[i]
}
// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimplib")
}
if value == "" {
delete(l.dynimplib, i)
} else {
l.dynimplib[i] = value
}
}
// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
return l.dynimpvers[i]
}
// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimpvers")
}
if value == "" {
delete(l.dynimpvers, i)
} else {
l.dynimpvers[i] = value
}
}
// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
if s, ok := l.extname[i]; ok {
return s
}
return l.SymName(i)
}
// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetExtname")
}
if value == "" {
delete(l.extname, i)
} else {
l.extname[i] = value
}
}
// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
if et, ok := l.elfType[i]; ok {
return et
}
return elf.STT_NOTYPE
}
// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymElfType")
}
if et == elf.STT_NOTYPE {
delete(l.elfType, i)
} else {
l.elfType[i] = et
}
}
// SymPlt returns the plt value for pe symbols.
func (l *Loader) SymPlt(s Sym) int32 {
if v, ok := l.plt[s]; ok {
return v
}
return -1
}
// SetPlt sets the plt value for pe symbols.
func (l *Loader) SetPlt(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetPlt")
}
if v == -1 {
delete(l.plt, i)
} else {
l.plt[i] = v
}
}
// SymGot returns the got value for pe symbols.
func (l *Loader) SymGot(s Sym) int32 {
if v, ok := l.got[s]; ok {
return v
}
return -1
}
// SetGot sets the got value for pe symbols.
func (l *Loader) SetGot(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetGot")
if v == -1 {
delete(l.got, i)
} else {
l.got[i] = v
}
}
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
// SymDynid returns the "dynid" property for the specified symbol.
func (l *Loader) SymDynid(i Sym) int32 {
if s, ok := l.dynid[i]; ok {
return s
}
return -1
}
// SetSymDynid sets the "dynid" property for a symbol.
func (l *Loader) SetSymDynid(i Sym, val int32) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymDynid")
}
if val == -1 {
delete(l.dynid, i)
} else {
l.dynid[i] = val
}
}
// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym {
if l.IsExternal(i) {
pp := l.getPayload(i)
return pp.gotype
}
r, li := l.toLocal(i)
Cherry Zhang
committed
for j := range auxs {
a := &auxs[j]
switch a.Type() {
case goobj2.AuxGotype:
Cherry Zhang
committed
return l.resolve(r, a.Sym())
}
}
return 0
}
// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit
}
return nil
}
r, _ := l.toLocal(i)
return r.unit
}
// SymPkg returns the package where the symbol came from (for
// regular compiler-generated Go symbols), but in the case of
// building with "-linkshared" (when a symbol is read from a
// shared library), will hold the library name.
// NOTE: this correspondes to sym.Symbol.File field.
func (l *Loader) SymPkg(i Sym) string {
if f, ok := l.symPkg[i]; ok {
return f
}
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit.Lib.Pkg
}
return ""
}
r, _ := l.toLocal(i)
return r.unit.Lib.Pkg
}
// SetSymPkg sets the package/library for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymPkg(i Sym, pkg string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymPkg")
}
// SymLocalentry returns the "local entry" value for the specified
// symbol.
func (l *Loader) SymLocalentry(i Sym) uint8 {
return l.localentry[i]
}
// SetSymLocalentry sets the "local entry" attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymLocalentry")
}
if value == 0 {
delete(l.localentry, i)
} else {
l.localentry[i] = value
}
}
// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
if l.IsExternal(i) {
r, li := l.toLocal(i)
return r.NAux(li)
}
Cherry Zhang
committed
// Returns the "handle" to the j-th aux symbol of the i-th symbol.
func (l *Loader) Aux2(i Sym, j int) Aux2 {
if l.IsExternal(i) {
return Aux2{}
}
r, li := l.toLocal(i)
if j >= r.NAux(li) {
return Aux2{}
}
return Aux2{r.Aux(li, j), r, l}
Cherry Zhang
committed
}
// GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
// symbols associated with a given function symbol. Prior to the
// introduction of the loader, this was done purely using name
// lookups, e.f. for function with name XYZ we would then look up
// go.info.XYZ, etc.
// FIXME: once all of dwarfgen is converted over to the loader,
// it would save some space to make these aux symbols nameless.
func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
if l.IsExternal(fnSymIdx) {
// Current expectation is that any external function will
// not have auxsyms.
return
}
r, li := l.toLocal(fnSymIdx)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
case goobj2.AuxDwarfInfo:
auxDwarfInfo = l.resolve(r, a.Sym())
if l.SymType(auxDwarfInfo) != sym.SDWARFINFO {
panic("aux dwarf info sym with wrong type")
}
case goobj2.AuxDwarfLoc:
auxDwarfLoc = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
panic("aux dwarf loc sym with wrong type")
}
case goobj2.AuxDwarfRanges:
auxDwarfRanges = l.resolve(r, a.Sym())
if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
panic("aux dwarf ranges sym with wrong type")
}
case goobj2.AuxDwarfLines:
auxDwarfLines = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
panic("aux dwarf lines sym with wrong type")
}
}
}
return
}
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
// PrependSub prepends 'sub' onto the sub list for outer symbol 'outer'.
// Will panic if 'sub' already has an outer sym or sub sym.
// FIXME: should this be instead a method on SymbolBuilder?
func (l *Loader) PrependSub(outer Sym, sub Sym) {
// NB: this presupposes that an outer sym can't be a sub symbol of
// some other outer-outer sym (I'm assuming this is true, but I
// haven't tested exhaustively).
if l.OuterSym(outer) != 0 {
panic("outer has outer itself")
}
if l.SubSym(sub) != 0 {
panic("sub set for subsym")
}
if l.OuterSym(sub) != 0 {
panic("outer already set for subsym")
}
l.sub[sub] = l.sub[outer]
l.sub[outer] = sub
l.outer[sub] = outer
}
// OuterSym gets the outer symbol for host object loaded symbols.
func (l *Loader) OuterSym(i Sym) Sym {
// FIXME: add check for isExternal?
return l.outer[i]
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
// NB: note -- no check for l.isExternal(), since I am pretty sure
// that later phases in the linker set subsym for "type." syms
return l.sub[i]
// SetOuterSym sets the outer symbol of i to o (without setting
// sub symbols).
func (l *Loader) SetOuterSym(i Sym, o Sym) {
if o != 0 {
l.outer[i] = o
} else {
delete(l.outer, i)
}
}
// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
l.growAttrBitmaps(l.NSym() + 1)
Than McIntosh
committed
}
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
type symWithVal struct {
s Sym
v int64
}
type bySymValue []symWithVal
func (s bySymValue) Len() int { return len(s) }
func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {
if s == 0 || l.sub[s] == 0 {
return s
}
// Sort symbols using a slice first. Use a stable sort on the off
// chance that there's more than once symbol with the same value,
// so as to preserve reproducible builds.
sl := []symWithVal{}
for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
}
sort.Stable(bySymValue(sl))
// Then apply any changes needed to the sub map.
ns := Sym(0)
for i := len(sl) - 1; i >= 0; i-- {
s := sl[i].s
l.sub[s] = ns
ns = s
}
// Update sub for outer symbol, then return
l.sub[s] = sl[0].s
return sl[0].s
}
// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
if reqLen > l.attrReachable.Len() {
// These are indexed by global symbol
l.attrReachable = growBitmap(reqLen, l.attrReachable)
l.attrOnList = growBitmap(reqLen, l.attrOnList)
l.attrLocal = growBitmap(reqLen, l.attrLocal)
l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
l.growExtAttrBitmaps()
}
func (l *Loader) growExtAttrBitmaps() {
// These are indexed by external symbol index (e.g. l.extIndex(i))
extReqLen := len(l.payloads)
if extReqLen > l.attrVisibilityHidden.Len() {
l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
l.attrShared = growBitmap(extReqLen, l.attrShared)
l.attrExternal = growBitmap(extReqLen, l.attrExternal)
Than McIntosh
committed
}
func (relocs *Relocs) Count() int { return len(relocs.rs) }
// At2 returns the j-th reloc for a global symbol.
Cherry Zhang
committed
func (relocs *Relocs) At2(j int) Reloc2 {
if relocs.l.isExtReader(relocs.r) {
pp := relocs.l.payloads[relocs.li]
return Reloc2{&relocs.rs[j], relocs.r, relocs.l, pp.reltypes[j]}
Cherry Zhang
committed
}
Cherry Zhang
committed
return Reloc2{&relocs.rs[j], relocs.r, relocs.l, 0}
Cherry Zhang
committed
}
// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
r, li := l.toLocal(i)
Than McIntosh
committed
if r == nil {
panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
}
return l.relocs(r, li)
}
// Relocs returns a Relocs object given a local sym index and reader.
func (l *Loader) relocs(r *oReader, li int) Relocs {
if l.isExtReader(r) {
pp := l.payloads[li]
rs = pp.relocs
return Relocs{
rs: rs,
li: li,
r: r,
l: l,
}
}
// RelocByOff implements sort.Interface for sorting relocations by offset.
type RelocByOff []Reloc
func (x RelocByOff) Len() int { return len(x) }
func (x RelocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off }
Cherry Zhang
committed
// FuncInfo provides hooks to access goobj2.FuncInfo in the objects.
type FuncInfo struct {
l *Loader
r *oReader
data []byte
auxs []goobj2.Aux
lengths goobj2.FuncInfoLengths
Cherry Zhang
committed
}
func (fi *FuncInfo) Valid() bool { return fi.r != nil }
func (fi *FuncInfo) Args() int {
return int((*goobj2.FuncInfo)(nil).ReadArgs(fi.data))
}
Cherry Zhang
committed
func (fi *FuncInfo) Locals() int {
return int((*goobj2.FuncInfo)(nil).ReadLocals(fi.data))
}
func (fi *FuncInfo) Pcsp() []byte {
pcsp, end := (*goobj2.FuncInfo)(nil).ReadPcsp(fi.data)
return fi.r.BytesAt(fi.r.PcdataBase()+pcsp, int(end-pcsp))
}
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
func (fi *FuncInfo) Pcfile() []byte {
pcf, end := (*goobj2.FuncInfo)(nil).ReadPcfile(fi.data)
return fi.r.BytesAt(fi.r.PcdataBase()+pcf, int(end-pcf))
}
func (fi *FuncInfo) Pcline() []byte {
pcln, end := (*goobj2.FuncInfo)(nil).ReadPcline(fi.data)
return fi.r.BytesAt(fi.r.PcdataBase()+pcln, int(end-pcln))
}
// Preload has to be called prior to invoking the various methods
// below related to pcdata, funcdataoff, files, and inltree nodes.
func (fi *FuncInfo) Preload() {
fi.lengths = (*goobj2.FuncInfo)(nil).ReadFuncInfoLengths(fi.data)
}
func (fi *FuncInfo) Pcinline() []byte {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
pcinl, end := (*goobj2.FuncInfo)(nil).ReadPcinline(fi.data, fi.lengths.PcdataOff)
return fi.r.BytesAt(fi.r.PcdataBase()+pcinl, int(end-pcinl))
}
func (fi *FuncInfo) NumPcdata() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumPcdata
}
func (fi *FuncInfo) Pcdata(k int) []byte {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
pcdat, end := (*goobj2.FuncInfo)(nil).ReadPcdata(fi.data, fi.lengths.PcdataOff, uint32(k))
return fi.r.BytesAt(fi.r.PcdataBase()+pcdat, int(end-pcdat))
}
func (fi *FuncInfo) NumFuncdataoff() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumFuncdataoff
}
func (fi *FuncInfo) Funcdataoff(k int) int64 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return (*goobj2.FuncInfo)(nil).ReadFuncdataoff(fi.data, fi.lengths.FuncdataoffOff, uint32(k))
}
func (fi *FuncInfo) Funcdata(syms []Sym) []Sym {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
if int(fi.lengths.NumFuncdataoff) > cap(syms) {
syms = make([]Sym, 0, fi.lengths.NumFuncdataoff)
} else {
syms = syms[:0]
}
for j := range fi.auxs {
a := &fi.auxs[j]
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
if a.Type() == goobj2.AuxFuncdata {
syms = append(syms, fi.l.resolve(fi.r, a.Sym()))
}
}
return syms
}
func (fi *FuncInfo) NumFile() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumFile
}
func (fi *FuncInfo) File(k int) Sym {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
sr := (*goobj2.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k))
return fi.l.resolve(fi.r, sr)
}
type InlTreeNode struct {
Parent int32
File Sym
Line int32
Func Sym
ParentPC int32
}
func (fi *FuncInfo) NumInlTree() uint32 {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
return fi.lengths.NumInlTree
}
func (fi *FuncInfo) InlTree(k int) InlTreeNode {
if !fi.lengths.Initialized {
panic("need to call Preload first")
}
node := (*goobj2.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k))
return InlTreeNode{
Parent: node.Parent,
File: fi.l.resolve(fi.r, node.File),
Line: node.Line,
Func: fi.l.resolve(fi.r, node.Func),
ParentPC: node.ParentPC,
}
}
Cherry Zhang
committed
func (l *Loader) FuncInfo(i Sym) FuncInfo {
var r *oReader
Cherry Zhang
committed
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx == 0 {
return FuncInfo{}
}
r = l.objs[pp.objidx].r
auxs = pp.auxs
} else {
var li int
r, li = l.toLocal(i)
Cherry Zhang
committed
}
Cherry Zhang
committed
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj2.AuxFuncInfo {
b := r.Data(int(a.Sym().SymIdx))
return FuncInfo{l, r, b, auxs, goobj2.FuncInfoLengths{}}
Cherry Zhang
committed
}
}
return FuncInfo{}
}
Cherry Zhang
committed
// Preload a package: add autolibs, add defined package symbols to the symbol table.
// Does not add non-package symbols yet, which will be done in LoadNonpkgSyms.
// Does not read symbol data.
func (l *Loader) Preload(syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64, flags int) {
roObject, readonly, err := f.Slice(uint64(length))
if err != nil {
log.Fatal("cannot read object file:", err)
}
r := goobj2.NewReaderFromBytes(roObject, readonly)
if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) {
log.Fatalf("found object file %s in old format, but -go115newobj is true\nset -go115newobj consistently in all -gcflags, -asmflags, and -ldflags", f.File().Name())
}
panic("cannot read object file")
}
localSymVersion := syms.IncVersion()
pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
ndef := r.NSym()
nnonpkgdef := r.NNonpkgdef()
or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, make([]Sym, ndef+nnonpkgdef+r.NNonpkgref()), ndef, uint32(len(l.objs))}
Cherry Zhang
committed
lib.ImportStrings = append(lib.ImportStrings, r.Autolib()...)
Cherry Zhang
committed
// DWARF file table
nfile := r.NDwarfFile()
unit.DWARFFileTable = make([]string, nfile)
for i := range unit.DWARFFileTable {
unit.DWARFFileTable[i] = r.DwarfFile(i)
}
Cherry Zhang
committed
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
l.addObj(lib.Pkg, or)
l.preloadSyms(or, pkgDef)
// The caller expects us consuming all the data
f.MustSeek(length, os.SEEK_CUR)
}
// Preload symbols of given kind from an object.
func (l *Loader) preloadSyms(r *oReader, kind int) {
ndef := r.NSym()
nnonpkgdef := r.NNonpkgdef()
var start, end int
switch kind {
case pkgDef:
start = 0
end = ndef
case nonPkgDef:
start = ndef
end = ndef + nnonpkgdef
default:
panic("preloadSyms: bad kind")
}
l.growSyms(len(l.objSyms) + end - start)
l.growAttrBitmaps(len(l.objSyms) + end - start)
for i := start; i < end; i++ {
name := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1)
v := abiToVer(osym.ABI(), r.version)
dupok := osym.Dupok()
gi, added := l.AddSym(name, v, r, i, kind, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())])
Cherry Zhang
committed
r.syms[i] = gi
if !added {
continue
}
if osym.TopFrame() {
l.SetAttrTopFrame(gi, true)
}
if osym.Local() {
l.SetAttrLocal(gi, true)
}
if strings.HasPrefix(name, "go.itablink.") {
l.itablink[gi] = struct{}{}
}
if strings.HasPrefix(name, "runtime.") {
if bi := goobj2.BuiltinIdx(name, v); bi != -1 {
// This is a definition of a builtin symbol. Record where it is.
l.builtinSyms[bi] = gi
}
}
if strings.HasPrefix(name, "go.string.") ||
strings.HasPrefix(name, "gclocals·") ||
strings.HasPrefix(name, "runtime.gcbits.") {
l.SetAttrNotInSymbolTable(gi, true)
if a := osym.Align(); a != 0 {
l.SetSymAlign(gi, int32(a))
}
Cherry Zhang
committed
// Add non-package symbols and references to external symbols (which are always
// named).
func (l *Loader) LoadNonpkgSyms(arch *sys.Arch) {
Cherry Zhang
committed
for _, o := range l.objs[1:] {
l.preloadSyms(o.r, nonPkgDef)
}
Cherry Zhang
committed
for _, o := range l.objs[1:] {
loadObjRefs(l, o.r, arch)
Cherry Zhang
committed
}
}
func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) {
ndef := r.NSym() + r.NNonpkgdef()
for i, n := 0, r.NNonpkgref(); i < n; i++ {
name := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1)
v := abiToVer(osym.ABI(), r.version)
r.syms[ndef+i] = l.LookupOrCreateSym(name, v)
gi := r.syms[ndef+i]
if osym.Local() {
l.SetAttrLocal(gi, true)
}
l.preprocess(arch, gi, name)
}
}
func abiToVer(abi uint16, localSymVersion int) int {
var v int
if abi == goobj2.SymABIstatic {
// Static
v = localSymVersion
} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
// Note that data symbols are "ABI0", which maps to version 0.
v = abiver
} else {
log.Fatalf("invalid symbol ABI: %d", abi)
}
return v
}
// preprocess looks for integer/floating point constant symbols whose
// content is encoded into the symbol name, and promotes them into
// real symbols with RODATA type and a payload that matches the
// encoded content.
func (l *Loader) preprocess(arch *sys.Arch, s Sym, name string) {
if name != "" && name[0] == '$' && len(name) > 5 && l.SymType(s) == 0 && len(l.Data(s)) == 0 {
x, err := strconv.ParseUint(name[5:], 16, 64)
log.Panicf("failed to parse $-symbol %s: %v", name, err)
su := l.MakeSymbolUpdater(s)
su.SetType(sym.SRODATA)
su.SetLocal(true)
switch name[:5] {
case "$f32.":
if uint64(uint32(x)) != x {
log.Panicf("$-symbol %s too large: %d", name, x)
su.AddUint32(arch, uint32(x))
case "$f64.", "$i64.":
su.AddUint64(arch, x)
log.Panicf("unrecognized $-symbol: %s", name)
}
}
}
// Load full contents.
func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols) {
// create all Symbols first.
l.growSyms(l.NSym())
Cherry Zhang
committed
l.growSects(l.NSym())
nr := 0 // total number of sym.Reloc's we'll need
for _, o := range l.objs[1:] {
nr += loadObjSyms(l, syms, o.r)
}
// Make a first pass through the external symbols, making
// sure that each external symbol has a non-nil entry in
// l.Syms (note that relocations and symbol content will
// be copied in a later loop).
toConvert := make([]Sym, 0, len(l.payloads))
for _, i := range l.extReader.syms {
sname := l.RawSymName(i)
if !l.attrReachable.Has(i) {
continue
}
pp := l.getPayload(i)
nr += len(pp.relocs)
// create and install the sym.Symbol here so that l.Syms will
// be fully populated when we do relocation processing and
// outer/sub processing below. Note that once we do this,
// we'll need to get at the payload for a symbol with direct
// reference to l.payloads[] as opposed to calling l.getPayload().
s := l.allocSym(sname, 0)
l.installSym(i, s)
toConvert = append(toConvert, i)
}
// allocate a single large slab of relocations for all live symbols
l.relocBatch = make([]sym.Reloc, nr)
// convert payload-based external symbols into sym.Symbol-based
for _, i := range toConvert {
// Copy kind/size/value etc.
pp := l.payloads[l.extIndex(i)]
s := l.Syms[i]
s.Version = int16(pp.ver)
s.Type = pp.kind
s.Size = pp.size
if pp.gotype != 0 {
s.Gotype = l.Syms[pp.gotype]
}
if f, ok := l.symPkg[i]; ok {
s.File = f
} else if pp.objidx != 0 {
s.File = l.objs[pp.objidx].r.unit.Lib.Pkg
// Copy relocations
batch := l.relocBatch
s.R = batch[:len(pp.relocs):len(pp.relocs)]
l.relocBatch = batch[len(pp.relocs):]
relocs := l.Relocs(i)
l.convertRelocations(i, &relocs, s, false)
// Copy data
s.P = pp.data
// Transfer over attributes.
l.migrateAttributes(i, s)
}
// load contents of defined symbols
Cherry Zhang
committed
for _, o := range l.objs[1:] {
loadObjFull(l, o.r)
Cherry Zhang
committed
}
// Note: resolution of ABI aliases is now also handled in
// loader.convertRelocations, so once the host object loaders move
// completely to loader.Sym, we can remove the code below.
// Resolve ABI aliases for external symbols. This is only
// needed for internal cgo linking.
for _, i := range l.extReader.syms {
if s := l.Syms[i]; s != nil && s.Attr.Reachable() {
for ri := range s.R {
r := &s.R[ri]
if r.Sym != nil && r.Sym.Type == sym.SABIALIAS {
r.Sym = r.Sym.R[0].Sym
}
}
}
}
Cherry Zhang
committed
}
// ResolveABIAlias given a symbol returns the ABI alias target of that
// symbol. If the sym in question is not an alias, the sym itself is
// returned.
func (l *Loader) ResolveABIAlias(s Sym) Sym {
if l.SymType(s) != sym.SABIALIAS {
return s
}
relocs := l.Relocs(s)