Newer
Older
}
// AttrSpecial returns true for a symbols that do not have their
// address (i.e. Value) computed by the usual mechanism of
// data.go:dodata() & data.go:address().
func (l *Loader) AttrSpecial(i Sym) bool {
return l.attrSpecial.Has(i)
}
// SetAttrSpecial sets the "special" property for a symbol (see
// AttrSpecial).
func (l *Loader) SetAttrSpecial(i Sym, v bool) {
if v {
} else {
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
}
}
// AttrCgoExportDynamic returns true for a symbol that has been
// specially marked via the "cgo_export_dynamic" compiler directive
// written by cgo (in response to //export directives in the source).
func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
_, ok := l.attrCgoExportDynamic[i]
return ok
}
// SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
// (see AttrCgoExportDynamic).
func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
if v {
l.attrCgoExportDynamic[i] = struct{}{}
} else {
delete(l.attrCgoExportDynamic, i)
}
}
// ForAllAttrCgoExportDynamic calls f for every symbol that has been
// marked with the "cgo_export_dynamic" compiler directive.
func (l *Loader) ForAllCgoExportDynamic(f func(Sym)) {
for s := range l.attrCgoExportDynamic {
f(s)
}
}
// AttrCgoExportStatic returns true for a symbol that has been
// specially marked via the "cgo_export_static" directive
// written by cgo.
func (l *Loader) AttrCgoExportStatic(i Sym) bool {
_, ok := l.attrCgoExportStatic[i]
return ok
}
// SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol
// (see AttrCgoExportStatic).
func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
if v {
l.attrCgoExportStatic[i] = struct{}{}
} else {
delete(l.attrCgoExportStatic, i)
}
}
// IsGeneratedSym returns true if a symbol's been previously marked as a
// generator symbol through the SetIsGeneratedSym. The functions for generator
// symbols are kept in the Link context.
func (l *Loader) IsGeneratedSym(i Sym) bool {
if !l.IsExternal(i) {
return false
}
return l.generatedSyms.Has(l.extIndex(i))
}
// SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be
// stored in generated symbols, and a function is registered and called for
// each of these symbols.
func (l *Loader) SetIsGeneratedSym(i Sym, v bool) {
if !l.IsExternal(i) {
panic("only external symbols can be generated")
}
if v {
l.generatedSyms.Set(l.extIndex(i))
l.generatedSyms.Unset(l.extIndex(i))
func (l *Loader) AttrCgoExport(i Sym) bool {
return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i)
}
// AttrReadOnly returns true for a symbol whose underlying data
// is stored via a read-only mmap.
func (l *Loader) AttrReadOnly(i Sym) bool {
if v, ok := l.attrReadOnly[i]; ok {
return v
}
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
return l.objs[pp.objidx].r.ReadOnly()
}
return false
}
r, _ := l.toLocal(i)
return r.ReadOnly()
}
// SetAttrReadOnly sets the "data is read only" property for a symbol
// (see AttrReadOnly).
func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
l.attrReadOnly[i] = v
}
// AttrSubSymbol returns true for symbols that are listed as a
// sub-symbol of some other outer symbol. The sub/outer mechanism is
// used when loading host objects (sections from the host object
// become regular linker symbols and symbols go on the Sub list of
// their section) and for constructing the global offset table when
// internally linking a dynamic executable.
//
// Note that in later stages of the linker, we set Outer(S) to some
// container symbol C, but don't set Sub(C). Thus we have two
// distinct scenarios:
//
// - Outer symbol covers the address ranges of its sub-symbols.
// Outer.Sub is set in this case.
// - Outer symbol doesn't conver the address ranges. It is zero-sized
// and doesn't have sub-symbols. In the case, the inner symbol is
// not actually a "SubSymbol". (Tricky!)
//
// This method returns TRUE only for sub-symbols in the first scenario.
//
// FIXME: would be better to do away with this and have a better way
// to represent container symbols.
func (l *Loader) AttrSubSymbol(i Sym) bool {
// we don't explicitly store this attribute any more -- return
// a value based on the sub-symbol setting.
o := l.OuterSym(i)
if o == 0 {
return false
}
return l.SubSym(o) != 0
}
Than McIntosh
committed
// Note that we don't have a 'SetAttrSubSymbol' method in the loader;
Than McIntosh
committed
// clients should instead use the AddInteriorSym method to establish
// containment relationships for host object symbols.
// Returns whether the i-th symbol has ReflectMethod attribute set.
func (l *Loader) IsReflectMethod(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagReflectMethod != 0
}
// Returns whether the i-th symbol is nosplit.
func (l *Loader) IsNoSplit(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagNoSplit != 0
// Returns whether this is a Go type symbol.
func (l *Loader) IsGoType(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagGoType != 0
// Returns whether this symbol should be included in typelink.
func (l *Loader) IsTypelink(i Sym) bool {
return l.SymAttr(i)&goobj.SymFlagTypelink != 0
// Returns whether this symbol is an itab symbol.
func (l *Loader) IsItab(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsItab()
}
// Returns whether this symbol is a dictionary symbol.
func (l *Loader) IsDict(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsDict()
}
// Returns whether this symbol is a compiler-generated package init func.
func (l *Loader) IsPkgInit(i Sym) bool {
if l.IsExternal(i) {
return false
}
r, li := l.toLocal(i)
return r.Sym(li).IsPkgInit()
}
// Return whether this is a trampoline of a deferreturn call.
func (l *Loader) IsDeferReturnTramp(i Sym) bool {
return l.deferReturnTramp[i]
}
// Set that i is a trampoline of a deferreturn call.
func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) {
l.deferReturnTramp[i] = v
}
// growValues grows the slice used to store symbol values.
func (l *Loader) growValues(reqLen int) {
curLen := len(l.values)
if reqLen > curLen {
l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
}
}
// SymValue returns the value of the i-th symbol. i is global index.
func (l *Loader) SymValue(i Sym) int64 {
return l.values[i]
}
// SetSymValue sets the value of the i-th symbol. i is global index.
func (l *Loader) SetSymValue(i Sym, val int64) {
l.values[i] = val
}
// AddToSymValue adds to the value of the i-th symbol. i is the global index.
func (l *Loader) AddToSymValue(i Sym, val int64) {
l.values[i] += val
}
// Returns the symbol content of the i-th symbol. i is global index.
func (l *Loader) Data(i Sym) []byte {
if l.IsExternal(i) {
Than McIntosh
committed
pp := l.getPayload(i)
if pp != nil {
return pp.data
}
return nil
}
r, li := l.toLocal(i)
return r.Data(li)
}
// FreeData clears the symbol data of an external symbol, allowing the memory
// to be freed earlier. No-op for non-external symbols.
// i is global index.
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp != nil {
}
}
}
// SymAlign returns the alignment for a symbol.
func (l *Loader) SymAlign(i Sym) int32 {
Than McIntosh
committed
if int(i) >= len(l.align) {
// align is extended lazily -- it the sym in question is
// outside the range of the existing slice, then we assume its
// alignment has not yet been set.
return 0
}
// TODO: would it make sense to return an arch-specific
// alignment depending on section type? E.g. STEXT => 32,
// SDATA => 1, etc?
Than McIntosh
committed
abits := l.align[i]
if abits == 0 {
return 0
}
return int32(1 << (abits - 1))
}
// SetSymAlign sets the alignment for a symbol.
func (l *Loader) SetSymAlign(i Sym, align int32) {
// Reject nonsense alignments.
Than McIntosh
committed
if align < 0 || align&(align-1) != 0 {
panic("bad alignment value")
}
Than McIntosh
committed
if int(i) >= len(l.align) {
l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...)
}
Than McIntosh
committed
l.align[i] = 0
Than McIntosh
committed
l.align[i] = uint8(bits.Len32(uint32(align)))
// SymSect returns the section of the i-th symbol. i is global index.
func (l *Loader) SymSect(i Sym) *sym.Section {
if int(i) >= len(l.symSects) {
// symSects is extended lazily -- it the sym in question is
// outside the range of the existing slice, then we assume its
// section has not yet been set.
return nil
}
Cherry Zhang
committed
return l.sects[l.symSects[i]]
}
// SetSymSect sets the section of the i-th symbol. i is global index.
func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
Cherry Zhang
committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
if int(i) >= len(l.symSects) {
l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
}
l.symSects[i] = sect.Index
}
// growSects grows the slice used to store symbol sections.
func (l *Loader) growSects(reqLen int) {
curLen := len(l.symSects)
if reqLen > curLen {
l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...)
}
}
// NewSection creates a new (output) section.
func (l *Loader) NewSection() *sym.Section {
sect := new(sym.Section)
idx := len(l.sects)
if idx != int(uint16(idx)) {
panic("too many sections created")
}
sect.Index = uint16(idx)
l.sects = append(l.sects, sect)
return sect
}
// SymDynimplib returns the "dynimplib" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimplib(i Sym) string {
return l.dynimplib[i]
}
// SetSymDynimplib sets the "dynimplib" attribute for a symbol.
func (l *Loader) SetSymDynimplib(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimplib")
}
if value == "" {
delete(l.dynimplib, i)
} else {
l.dynimplib[i] = value
}
}
// SymDynimpvers returns the "dynimpvers" attribute for the specified
// symbol, making up a portion of the info for a symbol specified
// on a "cgo_import_dynamic" compiler directive.
func (l *Loader) SymDynimpvers(i Sym) string {
return l.dynimpvers[i]
}
// SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
func (l *Loader) SetSymDynimpvers(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetDynimpvers")
}
if value == "" {
delete(l.dynimpvers, i)
} else {
l.dynimpvers[i] = value
}
}
// SymExtname returns the "extname" value for the specified
// symbol.
func (l *Loader) SymExtname(i Sym) string {
if s, ok := l.extname[i]; ok {
return s
}
return l.SymName(i)
}
// SetSymExtname sets the "extname" attribute for a symbol.
func (l *Loader) SetSymExtname(i Sym, value string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetExtname")
}
if value == "" {
delete(l.extname, i)
} else {
l.extname[i] = value
}
}
// SymElfType returns the previously recorded ELF type for a symbol
// (used only for symbols read from shared libraries by ldshlibsyms).
// It is not set for symbols defined by the packages being linked or
// by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
func (l *Loader) SymElfType(i Sym) elf.SymType {
if et, ok := l.elfType[i]; ok {
return et
}
return elf.STT_NOTYPE
}
// SetSymElfType sets the elf type attribute for a symbol.
func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymElfType")
}
if et == elf.STT_NOTYPE {
delete(l.elfType, i)
} else {
l.elfType[i] = et
}
}
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
// SymElfSym returns the ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymElfSym(i Sym) int32 {
return l.elfSym[i]
}
// SetSymElfSym sets the elf symbol index for a symbol.
func (l *Loader) SetSymElfSym(i Sym, es int32) {
if i == 0 {
panic("bad sym index")
}
if es == 0 {
delete(l.elfSym, i)
} else {
l.elfSym[i] = es
}
}
// SymLocalElfSym returns the "local" ELF symbol index for a given loader
// symbol, assigned during ELF symtab generation.
func (l *Loader) SymLocalElfSym(i Sym) int32 {
return l.localElfSym[i]
}
// SetSymLocalElfSym sets the "local" elf symbol index for a symbol.
func (l *Loader) SetSymLocalElfSym(i Sym, es int32) {
if i == 0 {
panic("bad sym index")
}
if es == 0 {
delete(l.localElfSym, i)
} else {
l.localElfSym[i] = es
}
}
// SymPlt returns the PLT offset of symbol s.
func (l *Loader) SymPlt(s Sym) int32 {
if v, ok := l.plt[s]; ok {
return v
}
return -1
}
// SetPlt sets the PLT offset of symbol i.
func (l *Loader) SetPlt(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetPlt")
}
if v == -1 {
delete(l.plt, i)
} else {
l.plt[i] = v
}
}
// SymGot returns the GOT offset of symbol s.
func (l *Loader) SymGot(s Sym) int32 {
if v, ok := l.got[s]; ok {
return v
}
return -1
}
// SetGot sets the GOT offset of symbol i.
func (l *Loader) SetGot(i Sym, v int32) {
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol for SetGot")
if v == -1 {
delete(l.got, i)
} else {
l.got[i] = v
}
}
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
// SymDynid returns the "dynid" property for the specified symbol.
func (l *Loader) SymDynid(i Sym) int32 {
if s, ok := l.dynid[i]; ok {
return s
}
return -1
}
// SetSymDynid sets the "dynid" property for a symbol.
func (l *Loader) SetSymDynid(i Sym, val int32) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymDynid")
}
if val == -1 {
delete(l.dynid, i)
} else {
l.dynid[i] = val
}
}
// DynidSyms returns the set of symbols for which dynID is set to an
// interesting (non-default) value. This is expected to be a fairly
// small set.
func (l *Loader) DynidSyms() []Sym {
sl := make([]Sym, 0, len(l.dynid))
for s := range l.dynid {
sl = append(sl, s)
}
sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] })
return sl
}
// SymGoType returns the 'Gotype' property for a given symbol (set by
// the Go compiler for variable symbols). This version relies on
// reading aux symbols for the target sym -- it could be that a faster
// approach would be to check for gotype during preload and copy the
// results in to a map (might want to try this at some point and see
// if it helps speed things up).
func (l *Loader) SymGoType(i Sym) Sym { return l.aux1(i, goobj.AuxGotype) }
// SymUnit returns the compilation unit for a given symbol (which will
// typically be nil for external or linker-manufactured symbols).
func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit
}
return nil
}
r, _ := l.toLocal(i)
return r.unit
}
// SymPkg returns the package where the symbol came from (for
// regular compiler-generated Go symbols), but in the case of
// building with "-linkshared" (when a symbol is read from a
// shared library), will hold the library name.
func (l *Loader) SymPkg(i Sym) string {
if f, ok := l.symPkg[i]; ok {
return f
}
if l.IsExternal(i) {
pp := l.getPayload(i)
if pp.objidx != 0 {
r := l.objs[pp.objidx].r
return r.unit.Lib.Pkg
}
return ""
}
r, _ := l.toLocal(i)
return r.unit.Lib.Pkg
}
// SetSymPkg sets the package/library for a symbol. This is
// needed mainly for external symbols, specifically those imported
// from shared libraries.
func (l *Loader) SetSymPkg(i Sym, pkg string) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymPkg")
}
// SymLocalentry returns an offset in bytes of the "local entry" of a symbol.
func (l *Loader) SymLocalentry(i Sym) uint8 {
return l.localentry[i]
}
// SetSymLocalentry sets the "local entry" offset attribute for a symbol.
func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
// reject bad symbols
if i >= Sym(len(l.objSyms)) || i == 0 {
panic("bad symbol index in SetSymLocalentry")
}
if value == 0 {
delete(l.localentry, i)
} else {
l.localentry[i] = value
}
}
// Returns the number of aux symbols given a global index.
func (l *Loader) NAux(i Sym) int {
if l.IsExternal(i) {
r, li := l.toLocal(i)
return r.NAux(li)
}
Cherry Zhang
committed
// Returns the "handle" to the j-th aux symbol of the i-th symbol.
func (l *Loader) Aux(i Sym, j int) Aux {
Cherry Zhang
committed
if l.IsExternal(i) {
Cherry Zhang
committed
}
r, li := l.toLocal(i)
if j >= r.NAux(li) {
Cherry Zhang
committed
}
return Aux{r.Aux(li, j), r, l}
Cherry Zhang
committed
}
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
// WasmImportSym returns the auxiliary WebAssembly import symbol associated with
// a given function symbol. The aux sym only exists for Go function stubs that
// have been annotated with the //go:wasmimport directive. The aux sym
// contains the information necessary for the linker to add a WebAssembly
// import statement.
// (https://webassembly.github.io/spec/core/syntax/modules.html#imports)
func (l *Loader) WasmImportSym(fnSymIdx Sym) (Sym, bool) {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to WasmImportSym", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
r, li := l.toLocal(fnSymIdx)
auxs := r.Auxs(li)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
case goobj.AuxWasmImport:
return l.resolve(r, a.Sym()), true
}
}
return 0, false
}
// GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
// symbols associated with a given function symbol. Prior to the
// introduction of the loader, this was done purely using name
// lookups, e.f. for function with name XYZ we would then look up
// go.info.XYZ, etc.
func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
if l.SymType(fnSymIdx) != sym.STEXT {
log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
}
r, auxs := l.auxs(fnSymIdx)
for i := range auxs {
a := &auxs[i]
switch a.Type() {
auxDwarfInfo = l.resolve(r, a.Sym())
if l.SymType(auxDwarfInfo) != sym.SDWARFFCN {
panic("aux dwarf info sym with wrong type")
}
auxDwarfLoc = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
panic("aux dwarf loc sym with wrong type")
}
auxDwarfRanges = l.resolve(r, a.Sym())
if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
panic("aux dwarf ranges sym with wrong type")
}
auxDwarfLines = l.resolve(r, a.Sym())
if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
panic("aux dwarf lines sym with wrong type")
}
}
}
return
}
Than McIntosh
committed
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
// AddInteriorSym sets up 'interior' as an interior symbol of
// container/payload symbol 'container'. An interior symbol does not
// itself have data, but gives a name to a subrange of the data in its
// container symbol. The container itself may or may not have a name.
// This method is intended primarily for use in the host object
// loaders, to capture the semantics of symbols and sections in an
// object file. When reading a host object file, we'll typically
// encounter a static section symbol (ex: ".text") containing content
// for a collection of functions, then a series of ELF (or macho, etc)
// symbol table entries each of which points into a sub-section
// (offset and length) of its corresponding container symbol. Within
// the go linker we create a loader.Sym for the container (which is
// expected to have the actual content/payload) and then a set of
// interior loader.Sym's that point into a portion of the container.
func (l *Loader) AddInteriorSym(container Sym, interior Sym) {
// Container symbols are expected to have content/data.
// NB: this restriction may turn out to be too strict (it's possible
// to imagine a zero-sized container with an interior symbol pointing
// into it); it's ok to relax or remove it if we counter an
// oddball host object that triggers this.
if l.SymSize(container) == 0 && len(l.Data(container)) == 0 {
panic("unexpected empty container symbol")
}
// The interior symbols for a container are not expected to have
// content/data or relocations.
if len(l.Data(interior)) != 0 {
panic("unexpected non-empty interior symbol")
}
// Interior symbol is expected to be in the symbol table.
if l.AttrNotInSymbolTable(interior) {
panic("interior symbol must be in symtab")
}
// Only a single level of containment is allowed.
if l.OuterSym(container) != 0 {
panic("outer has outer itself")
}
Than McIntosh
committed
// Interior sym should not already have a sibling.
if l.SubSym(interior) != 0 {
panic("sub set for subsym")
}
Than McIntosh
committed
// Interior sym should not already point at a container.
if l.OuterSym(interior) != 0 {
panic("outer already set for subsym")
}
Than McIntosh
committed
l.sub[interior] = l.sub[container]
l.sub[container] = interior
l.outer[interior] = container
}
// OuterSym gets the outer/container symbol.
func (l *Loader) OuterSym(i Sym) Sym {
return l.outer[i]
// SubSym gets the subsymbol for host object loaded symbols.
func (l *Loader) SubSym(i Sym) Sym {
return l.sub[i]
// growOuter grows the slice used to store outer symbol.
func (l *Loader) growOuter(reqLen int) {
curLen := len(l.outer)
if reqLen > curLen {
l.outer = append(l.outer, make([]Sym, reqLen-curLen)...)
}
}
Than McIntosh
committed
// SetCarrierSym declares that 'c' is the carrier or container symbol
// for 's'. Carrier symbols are used in the linker to as a container
// for a collection of sub-symbols where the content of the
// sub-symbols is effectively concatenated to form the content of the
// carrier. The carrier is given a name in the output symbol table
// while the sub-symbol names are not. For example, the Go compiler
// emits named string symbols (type SGOSTRING) when compiling a
// package; after being deduplicated, these symbols are collected into
// a single unit by assigning them a new carrier symbol named
// "go:string.*" (which appears in the final symbol table for the
Than McIntosh
committed
// output load module).
func (l *Loader) SetCarrierSym(s Sym, c Sym) {
if c == 0 {
panic("invalid carrier in SetCarrierSym")
}
if s == 0 {
panic("invalid sub-symbol in SetCarrierSym")
}
// Carrier symbols are not expected to have content/data. It is
// ok for them to have non-zero size (to allow for use of generator
// symbols).
if len(l.Data(c)) != 0 {
panic("unexpected non-empty carrier symbol")
}
l.outer[s] = c
// relocsym's foldSubSymbolOffset requires that we only
// have a single level of containment-- enforce here.
if l.outer[c] != 0 {
panic("invalid nested carrier sym")
// Initialize Reachable bitmap and its siblings for running deadcode pass.
func (l *Loader) InitReachable() {
l.growAttrBitmaps(l.NSym() + 1)
Than McIntosh
committed
}
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
type symWithVal struct {
s Sym
v int64
}
type bySymValue []symWithVal
func (s bySymValue) Len() int { return len(s) }
func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
// SortSub walks through the sub-symbols for 's' and sorts them
// in place by increasing value. Return value is the new
// sub symbol for the specified outer symbol.
func (l *Loader) SortSub(s Sym) Sym {
if s == 0 || l.sub[s] == 0 {
return s
}
// Sort symbols using a slice first. Use a stable sort on the off
// chance that there's more than once symbol with the same value,
// so as to preserve reproducible builds.
sl := []symWithVal{}
for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
}
sort.Stable(bySymValue(sl))
// Then apply any changes needed to the sub map.
ns := Sym(0)
for i := len(sl) - 1; i >= 0; i-- {
s := sl[i].s
l.sub[s] = ns
ns = s
}
// Update sub for outer symbol, then return
l.sub[s] = sl[0].s
return sl[0].s
}
// SortSyms sorts a list of symbols by their value.
func (l *Loader) SortSyms(ss []Sym) {
sort.SliceStable(ss, func(i, j int) bool { return l.SymValue(ss[i]) < l.SymValue(ss[j]) })
}
// Insure that reachable bitmap and its siblings have enough size.
func (l *Loader) growAttrBitmaps(reqLen int) {
if reqLen > l.attrReachable.Len() {
// These are indexed by global symbol
l.attrReachable = growBitmap(reqLen, l.attrReachable)
l.attrOnList = growBitmap(reqLen, l.attrOnList)
l.attrLocal = growBitmap(reqLen, l.attrLocal)
l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
Cherry Zhang
committed
l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface)
l.attrSpecial = growBitmap(reqLen, l.attrSpecial)
l.growExtAttrBitmaps()
}
func (l *Loader) growExtAttrBitmaps() {
// These are indexed by external symbol index (e.g. l.extIndex(i))
extReqLen := len(l.payloads)
if extReqLen > l.attrVisibilityHidden.Len() {
l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
l.attrShared = growBitmap(extReqLen, l.attrShared)
l.attrExternal = growBitmap(extReqLen, l.attrExternal)
l.generatedSyms = growBitmap(extReqLen, l.generatedSyms)
Than McIntosh
committed
}
func (relocs *Relocs) Count() int { return len(relocs.rs) }
// At returns the j-th reloc for a global symbol.
func (relocs *Relocs) At(j int) Reloc {
Cherry Zhang
committed
if relocs.l.isExtReader(relocs.r) {
return Reloc{&relocs.rs[j], relocs.r, relocs.l}
Cherry Zhang
committed
}
return Reloc{&relocs.rs[j], relocs.r, relocs.l}
Cherry Zhang
committed
}
// Relocs returns a Relocs object for the given global sym.
func (l *Loader) Relocs(i Sym) Relocs {
r, li := l.toLocal(i)
Than McIntosh
committed
if r == nil {
panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
}
return l.relocs(r, li)
}
// relocs returns a Relocs object given a local sym index and reader.
Cherry Zhang
committed
func (l *Loader) relocs(r *oReader, li uint32) Relocs {
if l.isExtReader(r) {
pp := l.payloads[li]
rs = pp.relocs
return Relocs{
rs: rs,
li: li,
r: r,
l: l,
}
}
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
func (l *Loader) auxs(i Sym) (*oReader, []goobj.Aux) {
if l.IsExternal(i) {
pp := l.getPayload(i)
return l.objs[pp.objidx].r, pp.auxs
} else {
r, li := l.toLocal(i)
return r, r.Auxs(li)
}
}
// Returns a specific aux symbol of type t for symbol i.
func (l *Loader) aux1(i Sym, t uint8) Sym {
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == t {
return l.resolve(r, a.Sym())
}
}
return 0
}
func (l *Loader) Pcsp(i Sym) Sym { return l.aux1(i, goobj.AuxPcsp) }
// Returns all aux symbols of per-PC data for symbol i.
// tmp is a scratch space for the pcdata slice.
func (l *Loader) PcdataAuxs(i Sym, tmp []Sym) (pcsp, pcfile, pcline, pcinline Sym, pcdata []Sym) {
pcdata = tmp[:0]
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
switch a.Type() {
case goobj.AuxPcsp:
pcsp = l.resolve(r, a.Sym())
case goobj.AuxPcline:
pcline = l.resolve(r, a.Sym())
case goobj.AuxPcfile:
pcfile = l.resolve(r, a.Sym())
case goobj.AuxPcinline:
pcinline = l.resolve(r, a.Sym())
case goobj.AuxPcdata:
pcdata = append(pcdata, l.resolve(r, a.Sym()))
}
}
return
}
// Returns the number of pcdata for symbol i.
func (l *Loader) NumPcdata(i Sym) int {
n := 0
_, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxPcdata {
n++
}
}
return n
}
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
// Returns all funcdata symbols of symbol i.
// tmp is a scratch space.
func (l *Loader) Funcdata(i Sym, tmp []Sym) []Sym {
fd := tmp[:0]
r, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxFuncdata {
fd = append(fd, l.resolve(r, a.Sym()))
}
}
return fd
}
// Returns the number of funcdata for symbol i.
func (l *Loader) NumFuncdata(i Sym) int {
n := 0
_, auxs := l.auxs(i)
for j := range auxs {
a := &auxs[j]
if a.Type() == goobj.AuxFuncdata {
n++
}
}
return n
}
// FuncInfo provides hooks to access goobj.FuncInfo in the objects.
Cherry Zhang
committed
type FuncInfo struct {
l *Loader
r *oReader
data []byte
Cherry Zhang
committed
}
func (fi *FuncInfo) Valid() bool { return fi.r != nil }
func (fi *FuncInfo) Args() int {
return int((*goobj.FuncInfo)(nil).ReadArgs(fi.data))
}
Cherry Zhang
committed
func (fi *FuncInfo) Locals() int {
return int((*goobj.FuncInfo)(nil).ReadLocals(fi.data))
Cherry Zhang
committed
}
func (fi *FuncInfo) FuncID() abi.FuncID {
return (*goobj.FuncInfo)(nil).ReadFuncID(fi.data)
}
func (fi *FuncInfo) FuncFlag() abi.FuncFlag {