import pandas as pd FEATHERS_DIR = "feathers" import generate_graphs as gg import helper_scripts.helper_functions as hf def main(): data = pd.read_feather(f"{FEATHERS_DIR}/data.feather") # data = pd.read_feather(f"{FEATHERS_DIR}/data_run_20241028.feather") static_scenario_statistical_analysis(data) # median_of_all_static_runs_per_algorithm(data) # stats_of_qtl95_of_packetloss(data) # error_count_and_rate(data) # measurements_with_negative_skewness(data) # iqr_kurtosis_of_delay_data(data) # print_kem_ids() def static_scenario_statistical_analysis(data): ldata = data print("Static scenario statistical analysis") ldata = gg.filter_data( ldata, scenario="static", protocol="quic", sec_level=["secLevel1", "secLevel1_hybrid"], ) means_of_medians = [] stdevs_of_medians = [] kem_alg_names = ldata["kem_alg"].unique() for kem_alg_name in kem_alg_names: kem_alg_data = ldata.query(f"kem_alg == '{kem_alg_name}'") medians = kem_alg_data["median"] # print(kem_alg_name, medians.mean(), medians.std()) means_of_medians.append(medians.mean()) stdevs_of_medians.append(medians.std()) print("Mean of stdevs of medians") print(pd.Series(stdevs_of_medians).mean()) print("Stdev of stdevs of medians") print(pd.Series(stdevs_of_medians).std()) def median_of_all_static_runs_per_algorithm(data): ldata = data print("Median of all static runs per algorithm") ldata = gg.filter_data(ldata, scenario="static", protocol="quic") # compound per algorithm, then take the median of all # get every algorithm name # print(ldata["kem_alg"].unique()) kem_alg_names = ldata["kem_alg"].unique() for kem_alg_name in kem_alg_names: kem_alg_data = ldata.query(f"kem_alg == '{kem_alg_name}'") # print(kem_alg_data) kem_alg_measurements = [] for row in kem_alg_data.iterrows(): # print(row[1]["measurements"]) kem_alg_measurements.extend(row[1]["measurements"]) # print(row[1]["median"]) print(f"Median of {kem_alg_name}") print(pd.Series(kem_alg_measurements).median()) print() def stats_of_qtl95_of_packetloss(data): ldata = data print("Stats of qtl95") ldata = gg.filter_data(ldata, scenario="packetloss", protocol="quic") ldata = ldata.query("kem_alg == 'x25519' or kem_alg == 'frodo640aes'") # ldata = ldata.query("kem_alg == 'mlkem1024' or kem_alg == 'frodo1344aes'") # ldata = ldata.query print("Showing data of packetloss quic") ldata = ldata.drop( columns=[ "scenario", "protocol", "sec_level", "cli_pkt_loss", "cli_delay", "cli_rate", "measurements", ] ) print(ldata) # For old run without bigger crypto buffer: Grep tells there are 83996 CRYPTO_BUFFER_EXCEEDEDs, while total error count is just a bit above it 84186 # For new run with fix: 187.0 other errors, probably from server side, because 'Shutdown before completion' on client side while waiting for handshake to complete -> b'808B57C2E1760000:error:0A0000CF:SSL routines:quic_do_handshake:protocol is shutdown:ssl/quic/quic_impl.c:1717:\n' def error_count_and_rate(data): print("Error count and rate") ldata = data print("Total index length") print(len(ldata.index)) print("Total error count") print(ldata["error_count"].sum()) ldata = ldata.query("error_count > 0") print("Total index length with error count > 0") print(len(ldata.index)) print("Error count describe") print(ldata["error_count"].describe()) print(ldata["scenario"].value_counts()) # print(ldata["scenario"].unique()) # all 10 scenarios print("With error count > 1") ldata = ldata.query("error_count > 1") print( ldata[ [ "scenario", "protocol", "sec_level", "kem_alg", "error_count", "error_rate", ] ] ) def measurements_with_negative_skewness(data): print("Measurements with negative skewness") ldata = data print("Skewness of data") print(ldata["skewness"].describe()) print("Amount of data with negative skewness") ldata = ldata.query("skewness < 0") print(len(ldata.index)) # ldata = ldata.query("scenario != 'reorder'") # print(len(ldata.index)) # give out per scenario the count of measurements with negative skewness print("Per scenario numbers of measurements with negative skewness") print(ldata["scenario"].value_counts()) # mostly reorder and jitter, rate a bit def iqr_kurtosis_of_delay_data(data): print("Kurtosis of data, Fisher's definition, so 0 is normal distribution") ldata = data print(ldata[["iqr", "kurtosis"]].describe()) ldata = ldata.query("scenario == 'delay'") print(ldata[["iqr", "kurtosis"]].describe()) def print_kem_ids(): data = hf.get_kem_ids() print(data) main()